Section 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes insulating the following HVAC piping systems:

1. Condensate drain piping, indoors and outdoors.
2. Energy Recovery-Water piping, indoors and outdoors.
3. Refrigerant suction and hot-gas piping, indoors and outdoors.

B. Related Sections:

1. Section 230713 "Duct Insulation."
2. Section 230716 "HVAC Equipment Insulation."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated, include thermal conductivity, water-vapor permeance, thickness, and jackets (both factory and field applied if any).

1.4 QUALITY ASSURANCE

A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.

B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesives, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.

1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
Section 230719 - HVAC PIPING INSULATION (continued)

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

B. Products shall not contain asbestos, lead, mercury, or mercury compounds.

C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

F. Cellular Glass: Inorganic, incombustible, foamed or cellulated glass with annealed, rigid, hermetically sealed cells. Factory-applied jacket requirements are specified in "Factory- Applied Jackets" Article.
Section 230719 - HVAC PIPING INSULATION (continued)

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Pittsburgh Corning Corporation: Foamglas.

2. Block Insulation: ASTM C 552, Type I.
3. Special-Shaped Insulation: ASTM C 552, Type III.
4. Board Insulation: ASTM C 552, Type IV.
5. Preformed Pipe Insulation without Jacket: Comply with ASTM C 552, Type II, Class 1.
7. Factory fabricate shapes according to ASTM C 450 and ASTM C 585.

G. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.

1. **Products:** Subject to compliance with requirements, provide one of the following:

 a. Aeroflex USA, Inc.: Aerocel.
 b. Armacell LLC; AP Armaflex.
 c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.

2.2 INSULATING CEMENTS

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. Cellular-Glass Adhesive: Two-component, thermosetting urethane adhesive containing no flammable solvents, with a service temperature range of minus 100 to plus 200 deg F (minus 73 to plus 93 deg C).

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
Section 230719 - HVAC PIPING INSULATION (continued)

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

C. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 a. *Aeroflex USA, Inc.;* Aeroseal.
 b. *Armacell LLC;* Armaflex 520 Adhesive.
 d. *K-Flex USA;* R-373 Contact Adhesive.

2. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

3. Adhesive shall comply with the testing and product requirements of the California Department of Health Services’ "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.4 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

B. Vapor-Battery Mastic: Water based; suitable for indoor use on below-ambient services.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. *Vinasco Corporation;* 749.

2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm (0.009 metric perm) at 43-mil (1.09-mm) dry film thickness.

3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).

4. Solids Content: ASTM D1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Battery Mastic: Solvent based; suitable for outdoor use on below-ambient services.

1. **Products:** Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
Section 230719 - HVAC PIPING INSULATION (continued)

b. - Marathon Industries; 570.

2. Water-Vapor Permeance: ASTM F 1249, 0.05 perm (0.033 metric perm) at 30-mil (0.8-mm) dry film thickness.
3. Service Temperature Range: Minus 50 to plus 220 deg F (Minus 46 to plus 104 deg C).
4. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

D. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

b. - Marathon Industries; 550.
e. Vinasco Corporation; WC-1/WC-5.

2. Water-Vapor Permeance: ASTM F 1249, 1.8 perms (1.2 metric perms) at 0.0625-inch (1.6-mm) dry film thickness.
3. Service Temperature Range: Minus 20 to plus 180 deg F (Minus 29 to plus 82 deg C).
4. Solids Content: 60 percent by volume and 66 percent by weight.

2.5 SEALANTS

A. Joint Sealants:

1. Joint Sealants for Cellular-Glass: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

b. - Marathon Industries; 405.
d. Mon-Eco Industries, Inc.; 44-05.
e. Pittsburgh Corning Corporation; Pittseal 444.

2. Materials shall be compatible with insulation materials, jackets, and substrates.
3. Permanently flexible, elastomeric sealant.
4. Service Temperature Range: Minus 100 to plus 300 deg F (Minus 73 to plus 149 deg C).
Section 230719 - HVAC PIPING INSULATION (continued)

5. Color: White or gray.

6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

B. ASJ Flashing Sealants and PVC Jacket Flashing Sealants:

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

2. Materials shall be compatible with insulation materials, jackets, and substrates.

3. Fire- and water-resistant, flexible, elastomeric sealant.

4. Service Temperature Range: Minus 40 to plus 250 deg F (Minus 40 to plus 121 deg C).

6. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

7. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKET

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. (68 g/sq. m) with a thread count of 10 strands by 10 strands/sq. in. (4 strands by 4 strands/sq. mm) for covering pipe and pipe fittings.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

2.8 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
Section 230719 - HVAC PIPING INSULATION (continued)

B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.

1. **Products**: Subject to compliance with requirements, provide one of the following:
 a. *Johns Manville; Zeston.*
 c. *Proto Corporation; LoSmoke.*
 d. *Speedline Corporation; SmokeSafe.*

2. **Adhesive**: As recommended by jacket material manufacturer.

3. **Color**: White.

4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

C. Metal Jacket:

1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 b. *ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.*
 c. *RPR Products, Inc.; Insul-Mate.*

 a. Factory cut and rolled to size.
 b. Finish and thickness are indicated in field-applied jacket schedules.
 c. Moisture Barrier for Indoor Applications: 2.5-mil- (0.063-mm-) thick polysurlyn.
 d. Moisture Barrier for Outdoor Applications: 2.5-mil- (0.063-mm-) thick polysurlyn.
 e. Factory-Fabricated Fitting Covers:
 1) Same material, finish, and thickness as jacket.
 2) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.9 **TAPES**

A. **ASJ Tape**: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.

1. **Products**: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
Section 230719 - HVAC PIPING INSULATION (continued)

a. ABI, Ideal Tape Division; 428 AWF ASJ.
b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
c. Compac Corporation; 104 and 105.
d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.

2. Width: 3 inches (75 mm).
3. Thickness: 11.5 mils (0.29 mm).
4. Adhesion: 90 ounces force/inch (1.0 N/mm) in width.
5. Elongation: 2 percent.
6. Tensile Strength: 40 lbf/inch (7.2 N/mm) in width.
7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. ABI, Ideal Tape Division; 370 White PVC tape.
 b. Compac Corporation; 130.
 c. Venture Tape; 1506 CW NS.

2. Width: 2 inches (50 mm).
3. Thickness: 6 mils (0.15 mm).
4. Adhesion: 64 ounces force/inch (0.7 N/mm) in width.
5. Elongation: 500 percent.
6. Tensile Strength: 18 lbf/inch (3.3 N/mm) in width.

2.10 SECUREMENTS

A. Bands:

1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

 a. ITW Insulation Systems; Gerrard Strapping and Seals.
 b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.

2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304; 0.015 inch (0.38 mm)
 thick, 1/2 inch (13 mm) wide with wing seal.

B. Wire: 0.062-inch (1.6-mm) soft-annealed, stainless steel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
Section 230719 - HVAC PIPING INSULATION (continued)

1. Verify that systems to be insulated have been tested and are free of defects.
2. Verify that surfaces to be insulated are clean and dry.
3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.

B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.

C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

D. Install insulation with longitudinal seams at top and bottom of horizontal runs.

E. Install multiple layers of insulation with longitudinal and end seams staggered.

F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

G. Keep insulation materials dry during application and finishing.

H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

I. Install insulation with least number of joints practical.

J. Below Ambient Systems:

1. Provide continuous vapor barrier; seal joints, longitudinal seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic and joint sealant.

2. Where mastic is indicated provide vapor-barrier mastic as required for indoor or outdoor application.

3. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous vapor barrier and thermal integrity unless otherwise indicated.
Section 230719 - HVAC PIPING INSULATION (continued)

4. Install insulation continuously through hangers and around anchor attachments. Shape insulation around attachment by tapering to and around the attachment with insulating cement and mastic.

K. Above Ambient Systems:

1. Where mastic is indicated provide breather mastic.
2. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal integrity unless otherwise indicated.
3. Install insulation continuously through hangers and around anchor attachments. Shape insulation around attachment by tapering to and around the attachment with insulating cement and mastic.
4. Steam and Steam Condensate:
 a. Insulate unions, valves, steam traps, control valves, pressure reducing valves, strainers, and other locations indicated with custom fit removable / reusable thermal insulation covers.
 b. Where removable insulation meets permanent insulation, removable insulation shall butt against permanent one with 3 inch Teflon flap strapped around permanent one with belt, double D rings and Velcro to hold flap; if butt joint is not practical, then removable insulation must have a 3 inch overlap over permanent insulation; provide belt, double D rings and Velcro to tighten the ends.

5. Do not install insulation to the following:
 a. Vibration-control devices.
 b. Testing agency labels and stamps.
 c. Nameplates and data plates.
 d. Manholes.
 e. Handholes.
 f. Cleanouts.
 g. Flexible run outs to terminal units.

L. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

M. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
 2. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.

N. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches (100 mm) beyond damaged areas. Tape and seal patches similar to butt joints.

P. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape
insulation at these connections by tapering it to and around the connection with insulating cement and finish with mastic.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches (50 mm) below top of roof flashing.
 4. Seal jacket to roof flashing with flashing sealant.

B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.

C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches (50 mm).
 4. Seal jacket to wall flashing with flashing sealant.

D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements for firestopping and fire-resistive joint sealers.

F. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies.

3.5 INSTALLATION OF CELLULAR-GLASS INSULATION

A. Insulation Installation on Straight Pipes and Tubes:
 1. Provide factory applied ASJ-SSL jacket.
Section 230719 - HVAC PIPING INSULATION (continued)

2. Create a water stop between insulation and pipe by brushing vapor barrier mastic around circumference of pipe every 3 feet.

B. Insulation Installation on Pipe Flanges, Fittings, Elbows, Valves and Pipe Specialties:

1. Provide insulation without factory applied jacket.
2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. Provide a design that maintains vapor barrier.
6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Install preformed pipe insulation to outer diameter of pipe flange. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with insulating cement.
7. Secure mitered sections or segmented insulation with wire or bands.
8. Cover pipe fittings, valves, strainers, flanges, unions, and other specialties and any segmented insulated surfaces with a layer of finishing cement and install field-applied glass-cloth jacket.
9. Apply vapor-barrier mastic at exposed ends of insulation at pipe flanges, unions, and fittings.
10. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

B. Insulation Installation on Pipe Flanges:
Section 230719 - HVAC PIPING INSULATION (continued)

1. Install pipe insulation to outer diameter of pipe flange.
2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

C. Insulation Installation on Pipe Fittings and Elbows:

1. Install mitered sections of pipe insulation.
2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

D. Insulation Installation on Valves and Pipe Specialties:

1. Install preformed valve covers manufactured of same material as pipe insulation when available.
2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
3. Install insulation to flanges as specified for flange insulation application.
4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch (50-mm) overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch- (1.6-mm-) thick coats of mastic.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.
4. Finish to achieve smooth, uniform finish.

B. Where metal jackets are indicated, install with 2-inch (50-mm) overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches (300 mm) o.c. and at end joints.

1. Do not install metal jacket over field-applied glass-cloth jacket unless indicated in schedule.

3.8 FINISHES

A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below.
Section 230719 - HVAC PIPING INSULATION (continued)

1. Semi-Gloss Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 b. Color: White. Vary first and second coats to allow visual inspection of the completed Work.

2. Paint exposed piping without field applied metal jacket.

B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer’s recommended protective coating. Color: White.

C. Do not field paint aluminum jackets.

3.9 PIPING INSULATION SCHEDULE, GENERAL

A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor’s option.

3.10 INDOOR PIPING INSULATION SCHEDULE

A. Condensate and Equipment Drain Water below 60 Deg F (16 Deg C):

1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 3/4 inch (19 mm) thick.

B. Energy Recovery Water, 30 to 200 Deg F:

1. NPS 3 (DN 80) and Smaller: Insulation shall be one of the following:
 a. Cellular Glass: 2 inches (50 mm) thick.

2. Insulation with metal jacket shall be one of the following:
 a. Cellular Glass: 2-1/2 inches (63 mm) thick.

3. Insulation in unconditioned spaces such as ventilated attics and non-conditioned equipment rooms shall be one of the following:
 a. Cellular Glass: 2-1/2 inches (63 mm) thick.

C. Refrigerant Suction and Hot-Gas Piping:

1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch (25 mm) thick.

D. Refrigerant Suction and Hot-Gas Flexible Tubing:
Section 230719 - HVAC PIPING INSULATION (continued)

1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch (25 mm) thick.

3.11 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

A. Energy Recovery Water:
 1. All Pipe Sizes: Insulation shall be one of the following:
 a. Cellular Glass: 2-1/2 inches (63 mm) thick.

B. Refrigerant Suction and Hot-Gas Piping:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch (25 mm) thick.

C. Refrigerant Suction and Hot-Gas Flexible Tubing:
 1. All Pipe Sizes: Insulation shall be the following:
 a. Flexible Elastomeric: 1 inch (25 mm) thick.

3.12 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. Piping, Concealed: None.

C. Piping, Exposed: Aluminum, Corrugated: 0.016 inch (0.41 mm) thick.

D. Exposed fittings, valves, strainers, flanges, unions, and other specialties:
 1. Glass cloth jacket.

3.13 OUTDOOR, ABOVEGROUND FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. Piping, Concealed: Aluminum, Corrugated: 0.024 inch (0.61 mm) thick.

C. Piping, Exposed: Aluminum, Corrugated: 0.024 inch (0.61 mm) thick.

D. Exposed fittings, valves, strainers, flanges, unions, and other specialties:
 1. Glass cloth jacket, install metal jacket over finished glass-cloth jacket.
Section 230719 - HVAC PIPING INSULATION (continued)

END OF SECTION 230719
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.

B. Related Sections include the following:

1. Section 230519 "Meters and Gages for HVAC Piping" for measuring equipment that relates to this Section.
2. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for coordination requirements that relate to this Section.
3. Section 230923 "Control-Voltage Electrical Power Cables" for requirements that relate to this Section.
4. Section 230928 "Pathways for Control-Voltage Cables" for requirements that relate to this Section.
5. Section 233300 "Air Duct Accessories" for dampers that relate to this Section.
6. Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for requirements that relate to this Section.
7. Section 260533 "Raceways and Boxes for Electrical Systems" for requirements that relate to this Section.
8. Section 260953 "Digital, Addressable Fire-Alarm System" for coordination requirements that relate to this Section.

1.3 DEFINITIONS

A. AAC: Advanced Application Controller; Programmable controller serving single piece of equipment and residing on peer to peer or high level building network.

B. ASC: Application Specific Controller; Pre-programmed controller with specific routines for applicable equipment and residing on lower level or sub-LAN network connected to a BC.

C. BACnet: A control network technology platform for designing and implementing interoperable control devices and networks.

D. BAS: Building Automation System.

E. BC: Building Controller; Programmable controller with input/output points residing on peer-to-peer or high level building network.

F. DDC: Direct digital control.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

G. I/O: Input/output.
H. Gateway: Device connecting two or more communication networks utilizing different application protocols.
I. LAN: Local Area Network.
J. LonWorks: A control network technology platform for designing and implementing interoperable control devices and networks.
K. MS/TP: Master slave/token passing.
L. PC: Personal computer.
M. PID: Proportional plus integral plus derivative.
N. Router: Device connecting two or more communication networks utilizing the same application protocol.
O. RTD: Resistance temperature detector.
P. SPD: Surge Protection Device.
Q. VPN: Virtual Private Network

1.4 SCOPE
A. The intent of this specification is to provide a complete and operational BAS designed to accomplish the intent of the sequences of operation.
B. Electrical Work: Furnish all control wiring, conduit, relays, contactors and electrical work required as integral part of the instrumentation and control system or indicated on drawings.
 1. Control contractor shall provide relays and/or contactors required for operation of single phase motors, 1 hp and smaller. Motor starters for three phase motors and single phase motors larger than 1 hp shall be furnished and installed by Division 26 contractor.
C. Mechanical Work: Furnish all wells for water monitoring devices, flow switches and alarms, sensors, etc. to mechanical contractor for installation.
D. BAS System: The BAS manufacturer shall furnish and install a fully integrated building automation system, incorporating direct digital control (DDC) for energy management, equipment monitoring and control, and subsystems with open communications capabilities as herein specified.
 1. Compatibility: The BAS system shall have a documented history of compatibility by design for a minimum of 15 years. Future compatibility shall be supported for no less than 10 years. Compatibility shall be defined as the ability to upgrade existing field panels to current level of technology, and extend new field panels on a previously installed network. Compatibility shall be defined as the ability for any existing field
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

panel microprocessor to be connected and directly communicate with new field panels
without bridges, routers or protocol converters.

2. Architecture: System architectural design shall eliminate dependence upon any single
device for alarm reporting and control execution. Each DDC Controller shall operate
independently by performing its own specified control, alarm management, operator I/O,
and data collection. The failure of any single component or network connection shall not
interrupt the execution of any control strategy, reporting, alarming and trending function,
or any function at any operator interface device.

3. DDC Controllers shall be able to access any data from, or send control commands and
alarm reports directly to, any other DDC Controller or combination of controllers on the
network without dependence upon a central or intermediate processing device. DDC
Controllers shall also be able to send alarm to multiple operator workstations without
dependence upon a central or intermediate processing device.

4. The system shall be scalable in nature and shall permit expansion of both capacity and
functionality through the addition of sensors, actuators, DDC Controllers, and operator
devices.

5. Spare Capacity: Building Controllers and Advanced Application Controllers shall be
selected to provide a minimum of 10% spare I/O point capacity for each point type found
at each location. If input points are not universal, 10% of each type is required. If
outputs are not universal, 10% of each type is required. A minimum of one spare is
required for each type of point used. DDC controllers shall have sufficient internal
memory for the specified control sequences and trend logging. There shall be a
minimum of 25% of available memory free for future use. Future use of spare capacity
shall require providing the field device, field wiring, points database definition, and
custom software. No additional Controller boards or point modules shall be required to
implement use of these spare points.

6. All real-time clocks and data file RAM shall battery back-up for a minimum 72 hours and
include local and system low battery indication.

7. Provide an uninterruptable power supply (UPS) capable of powering the end device for a
minimum of four hours, for workstation(s) and building controllers.

8. Provide surge transient protection for all DDC controllers and operator workstations.

9. Provide static, transient and short-circuit protection on all inputs and outputs. Protect
communication lines against incorrect wiring, static transients and induced magnetic
interference.

10. Provide satisfactory operation without damage at 110% and 85% of rated voltage and at
plus 3 Hertz variation in line frequency.

11. Communications:

a. Communication between building controllers and all operator/server workstations
shall be over a high-speed Ethernet network using standard TCP/IP, IEEE 802.3
protocol. All nodes on this network shall be peers. The operator shall not have to
identify the panel or address to view or control an object. AACs and ASCs shall
be constantly scanned by their respective BC to update point and alarm
information. System shall be capable of utilizing the standard open BACnet
protocol as specified herein and be able to integrate third-party systems via
existing vendor protocols. System shall be capable of BACnet communication
according to ASHRAE standard SPC-135A 2004.

b. Building controllers and other devices residing on the primary building level
network shall communicate via BACnet IP. Devices on secondary sub-networks
shall communicate via BACnet MS/TP.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

E. Abbreviations, Symbols and Definitions: All letter symbols and engineering unit abbreviations utilized in information displays and printouts shall be fully explained and documented in the documentation provided.

F. System Commissioning: The Control Contractor shall include within his bid price an allowance for 16 hours of time to meet with the Engineer for the purpose of commissioning the system, as described in "Commissioning" of this section. Time for the Engineer shall be charged at $160.00 per hour and billed directly to the Controls Contractor from the Engineer.

1.5 SYSTEM PERFORMANCE

A. Comply with the following performance requirements:

1. Graphic Display: Display graphic with minimum 20 dynamic points with current data within 10 seconds. System shall be capable of displaying up to 400 dynamic points per graphic.
2. Graphic Refresh: Update graphic with minimum 20 dynamic points with current data within 8 seconds. Automatically refresh every 15 seconds.
3. Object Command: Reaction time of less than two seconds between operator command of a binary object and device reaction.
4. Object Scan: Transmit change of state and change of analog values to control units or workstation within six seconds.
5. Alarm Response Time: Annunciate alarm at workstation within 15 seconds. Multiple workstations must receive alarms within five seconds of each other.
6. Program Execution Frequency: Run capability of applications as often as five seconds, but selected consistent with mechanical process under control.
7. Performance: Programmable controllers shall execute DDC PID control loops, and scan and update process values and outputs at least once per second.
8. Reporting Accuracy: Report values and maintain measured variables within tolerances as follows:
 a. Water Temperature: Plus or minus 1 deg F (0.5 deg C).
 b. Water Flow: Plus or minus 5 percent of full scale.
 c. Water Pressure (Absolute & Differential): Plus or minus 2 percent of full scale.
 d. Space Temperature: Plus or minus 1 deg F (0.5 deg C).
 e. Ducted Air Temperature: Plus or minus 1 deg F (0.5 deg C).
 f. Outside Air Temperature: Plus or minus 2 deg F (1.0 deg C).
 g. Dew Point Temperature: Plus or minus [3 deg F (1.5 deg C)] [1 deg F (0.5 deg C)].
 h. Temperature Differential: Plus or minus 0.25 deg F (0.15 deg C).
 i. Relative Humidity: Plus or minus 2 percent.
 j. Airflow (Pressurized Spaces): Plus or minus 3 percent of full scale.
 k. Airflow (Measuring Stations): Plus or minus 5 percent of full scale.
 l. Airflow (Terminal): Plus or minus 10 percent of full scale.
 m. Air Pressure (Space): Plus or minus 0.01-inch wg (2.5 Pa).
 n. Air Pressure (Ducts): Plus or minus 0.1-inch wg (25 Pa).
 o. Electrical: Plus or minus 5 percent of reading (not including utility supplied meters).

9. Stability of Control: Maintain measured variable within tolerances as follows:
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

a. Air Pressure within Range 0 to 6-inch wg (0 to 1.5 kPa): Plus or minus 0.2-inch wg (50 Pa).
b. Air Pressure within Range -0.1 to 0.1-inch wg (-25 to 25 Pa): Plus or minus 0.01-inch wg (2.5 Pa).
c. Space Temperature: Plus or minus 2 deg F (1.0 deg C).
d. Duct Temperature: Plus or minus 2 deg F (1.0 deg C).
e. Relative Humidity: Plus or minus 5 percent.
f. Water Pressure within Range 1 to 150 psig: Plus or minus 1.5 psi.
g. Water Pressure within Range 0 to 50-inch wg (0 to 12.5 kPa): Plus or minus 1-inch wg.

1.6 ACTION SUBMITTALS

A. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated. Provide for all control system components. When manufacturer has cut sheets that apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted or clearly indicated by other means. Each submitted piece of literature and drawing shall clearly reference the specification and/or drawing that the submittal is being submitted to cover.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1. Bill of materials of equipment indicating quantity, manufacturer, and model number.
2. Schedule of dampers including size, leakage, and flow characteristics.
3. Schedule of valves including flow characteristics, size, configuration, CV, system pressures, capacity and location.
5. Object Naming Convention: Indicate the format, structure and standards of typical point names. Provide a list of point names for typical equipment and functions with specific coordinated examples. The addressing scheme shall be coordinated and approved by the Owner and Engineer.
6. DDC System Hardware:

 a. Wiring diagrams for control units with termination numbers.
 b. Schematic diagrams and floor plans for field sensors and control hardware.
 c. Schematic diagrams for control, communication, and power wiring, showing trunk data conductors and wiring between operator workstation and control unit locations.

7. Control System Software: List of color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations.
8. Controlled Systems:

 a. Schematic diagrams of each controlled system with control points labeled and control elements graphically shown, with wiring.
 b. Written description of sequence of operation.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

c. Points list: Object list shall include for each physical or logical point, the name, description, display units, object ID, associated device ID, address, object type (AO, AI, DI, DO), initial value, default value, reset limits, alarm high and low limits. Coordinate object names and addresses with system schematics.

9. Field Quality Control Test & Inspection Forms: Include forms that will be used for field quality control tests, point-to-point checkout, and calibration verification. Provide description of procedures that will be used.

1.7 INFORMATIONAL SUBMITTALS

A. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with ASHRAE 135.

B. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with LonWorks.

C. Qualification Data: For Installer and manufacturer.

D. Software Upgrade Kit: For Owner to use in modifying software to suit future systems revisions or monitoring and control revisions.

E. Field quality-control test and inspection reports.

F. Training Plan: For Engineer and Owner to use in determining the content, format, and syllabi necessary for the training process. Provide description of process, report formats, and checklists to be used in Part 3: “Control System Demonstration and Acceptance.

G. Commissioning: Provide the following to Engineer and Commissioning Authority to verify compliance with design intent prior to the commissioning demonstration.

 1. Printout of each graphic screen in 8-1/2" x 11" format.
 2. Printout of software programming, including comment statements, for each system in 8-1/2" x 11" format.

1.8 CLOSEOUT SUBMITTALS

A. The contractor shall provide three copies of the following included in an operation and maintenance manual for the use of the owner's operating personnel. Each manual shall be an 8-1/2" X 11" loose-leaf 3-ring binder with identification inserts in clear vinyl on the front cover and the back spine. Identification insert shall include building name, owner, controls contractor, design engineer, commissioning authority and commissioning date. Provide separate sections with the following tabbed dividers. Each of the following shall incorporate as-built data derived from the commissioning process.

 1. TAB 1 “System Schematics” – Approved submittals indicating as-built conditions.
 2. TAB 2 “Object List” – Approved submittals Including final object names, setpoints, reset limits, alarm high and low limits, default values, etc. Object list shall also identify.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

Also provide in comma separated value (*.csv) file format on optical disk in binder pocket.

3. Tab 3 “HVAC Plans” – As-built version of submitted HVAC plans in 8 ½”x11” format indicating controlled equipment, control panel and sensor locations.

4. Tab 4 “Valve & Damper Schedule” – Approved submittals

5. Tab 5 “Object Naming Convention” – Approved submittals

6. Tab 6 “TAB Data” – Spread sheet format indicating final flow coefficients for each air flow monitoring station and water meter.

7. Tab 7 “System Verification Checklists” – Signed and dated by the installing contractor. This documentation shall include point-to-point verification specified herein and test measurements and system calibrations specified herein. A certification report shall be provided listing the test.

8. Tab 8 “Functional Performance Tests” – Copies of FPT forms completed and approved by the commissioning authority and as required to meet requirements of Part 3: “Control System Verification, Demonstration and Acceptance.”

9. Tab 9 “Bill of Materials – Approved submittals

10. Tab 10 “Data Sheets” – Approved submittals

11. Tab 11 “Control System Software” - Include technical data for operating system software, operator interface, color graphics, and other third-party applications. List color graphics indicating monitored systems, data (connected and calculated) point addresses, output schedule, and operator notations. Include the following:

 a. Software operating and upgrade manuals.
 b. Program Software Backup: On a magnetic media or compact disc, complete with data files.
 c. Device address list.
 d. Printout of final software programming and graphic screens.
 e. Software license required by and installed for DDC workstations and control systems.

12. Tab 12 “O&M” – Operation and maintenance manuals for each controller, valve, damper, meter or any other device or piece of equipment. O&M manuals shall be specific to the product used for this project and shall specifically identifying the actual product and options used and only contain O&M information pertaining to said product. Submittal of a general series of products is not acceptable. At minimum, provide the following.

 a. An executive summary at the front end of the tabbed section. The executive summary should outline the type and location of specific items that require routine maintenance or calibration (i.e., CO₂ sensors) and the general procedure for performing said work.
 b. Operator’s Manual with procedures for operating control systems, logging on and off, handling alarms, producing point reports, trending data, overriding computer control, and changing set points and variables.
 c. Programming manual or set of manuals with description of programming language and of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
 d. Engineering, installation, and maintenance manual or set of manuals that explains how to design and install new points, panels, and other hardware; how to perform preventive maintenance and calibration; how to debug hardware problems; and how to repair or replace hardware.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

 e. Documentation of all programs created using custom programming language, including set points, tuning parameters, and object database.
 f. Programs and database on optical media.
 g. List of recommended spare parts with part numbers and suppliers.
 h. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware, including computer equipment and sensors.
 i. Interconnection wiring diagrams with identified and numbered system components and devices.
 j. Calibration records and list of set points.

13. TAB 13 “Training” – Training videos specified herein on DVD format.
14. TAB 14 “Service Contacts” - Names, addresses, and 24-hour telephone numbers of local factory direct service representatives for equipment and control systems.
15. Tab 15 “Warranty” - Licenses, guarantees, and warranty documents for equipment and systems.

1.9 MAINTENANCE MATERIAL SUBMITTALS

 A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Maintenance Materials: One thermostat adjusting key(s).

1.10 QUALITY ASSURANCE

 A. Materials and equipment shall be the catalogued products of manufacturers regularly engaged in production and installation of automatic temperature control systems and shall be manufacturer’s latest standard design that complies with the specification requirements. All systems and components shall have been thoroughly tested and proven in actual use for at least two years or as approved by the Engineer.

 B. The installation of the control system shall be performed under the direct supervision of the controls manufacturer with the shop drawings, flow diagrams, bill of materials, component designation or identification number and sequence of operation all bearing the name of the manufacturer. The installing manufacturer shall certify in writing that the shop drawings have been prepared by the equipment manufacturer and that the equipment manufacturer has supervised their installation. In addition, the equipment manufacturer shall certify in writing that the shop drawings were prepared by their company and that all temperature control equipment was installed under their direct supervision.

 C. Installer Qualifications: The control system shall be designed and installed, commissioned and serviced by manufacturer employed, factory trained personnel.

 1. Controls Contractor shall have an in-place support facility within 50 miles of the site with technical staff, spare parts inventory and necessary test and diagnostic equipment. Distributors or licensed installing contractors are not acceptable.
2. Controls Contractor shall provide full time, on site, experienced project manager for this work, responsible for direct supervision of the design, installation, start up, and commissioning of the BAS system.

3. The Bidder shall be regularly engaged in the installation and maintenance of BAS systems and shall have a minimum of 10 years of demonstrated technical expertise and experience in the installation and maintenance of BAS systems similar in size and complexity to this project.

4. The Controls Contractor shall maintain a service organization consisting of factory trained service personnel.

 a. Provide a list of 10 projects, similar in size and scope to this project, completed within the last 5 years.

1.11 DELIVERY, STORAGE, AND HANDLING

 A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.

 B. System Software: Update to latest version of software at Project completion.

1.12 COORDINATION

 A. Products furnished by Control Contractor but installed by Mechanical Contractor:

 1. Control Valves.
 2. Electronic Actuators.
 3. Control Dampers.
 5. Thermal Wells and Sockets.
 6. Taps and Tap Isolation Valves.
 7. The control supplier shall provide to the variable volume terminal unit manufacturer the static pressure transmitter, damper actuator, fan control relay, transformer and application specific controller for factory mounting to the boxes prior to shipment to the project.

 B. Products furnished and installed by Mechanical Contractor but wired by Electrical Contractor:

 1. Variable Frequency Drives.

 C. Products furnished and installed by Mechanical or Electrical Contractor, but integrated to by Control Contractor. Unless noted otherwise, wiring shall be by Control Contractor:

 1. Roof Top Unit Controls via BACnet.
 2. Variable Frequency Drives via BACnet.
 3. Control Dampers via Hardwire.
 4. Smoke and Fire/Smoke Dampers complete with actuators and end switches via Hardwire.
 5. Emergency Generator via BACnet or Hardwire.
 6. Automatic Transfer Switch via Hardwire
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

D. Electrical Contractor:

1. Wiring of power feeds through all disconnects or starters to electrical motors.
2. Wiring of any remote start/stop and manual or automatic motor speed control devices not furnished by Control Contractor.
3. Wiring of any electrical sub-metering devices furnished by Control Contractor.
4. Enclosure with lockable door for each digital energy monitor (DEM) and one (1) 3-pole breaker to provide service disconnect of the voltage sensing leads of each DEM. A DEM shall be located on the secondary service at the building transformer and elsewhere as indicated.

E. Coordinate location of thermostats, humidistats, and other exposed control sensors with plans and room details before installation.

F. Coordinate equipment with Section 260953 "Digital, Addressable Fire-Alarm System" and Section 283112 "Zoned (DC Loop) Fire-Alarm System" to achieve compatibility with equipment that interfaces with that system.

G. Coordinate supply of conditioned electrical branch circuits for control units and operator workstation.

H. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Section 033000 "Cast-in-Place Concrete."

1.13 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer warrants instrumentation and control system free from defects within specified warranty period.

1. Warranties include, but are not limited to, the following:

 a. Recalibration of sensors.
 b. Tuning of PID control loops.
 c. Labor & materials.
 d. Update of operator workstation software, project specific software, graphics, database, and firmware.

2. System failures during the warranty period shall be adjusted, repaired, or replaced at no charge or reduction in service to the Owner.

3. The Contractor shall respond to the Owner’s request for warranty service within 24 hours during customary business hours.

4. Written authorization by Owner must be granted prior to the installation of updates to software, graphics, database, or firmware.

5. Warranty Period: One year from date of Final Completion.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

B. At the end of the final start-up/testing, if equipment and systems are operating satisfactorily to the Owner and Engineer, the Owner shall sign certificates certifying that the control system’s operation has been tested and accepted in accordance with the terms of this specification. The date of Owner’s acceptance shall be the start of warranty with qualified factory trained technician(s) within four (4) hours of verbal or written service request 24 hours a day, 7 days a week, 365 days a year, including holidays and weekends.

1. Extended Warranty: Provide alternate pricing along with project warranty letter to extend all provisions of first year warranty for an additional two (2) years.

1.14 OWNERSHIP OF PROPRIETARY MATERIAL

A. All project developed hardware and software shall become the property of the Owner. These include but are not limited to:

1. Project specific graphic images
2. Record drawings
3. Project specific database
4. Project specific application programming code
5. All project documentation

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 CONTROL SYSTEM

A. Manufacturers: The following list of approved manufacturers applies to controller software, custom application programming language, building controllers, advanced application controllers, and application specific controllers. All other products specified herein and elsewhere in Division 23 specifications are not required to be manufactured by the above manufacturers.

1. Tridium, Inc.
2. Alerton Inc.
3. Automated Logic Corporation.
5. KMC Controls/Kreuter Manufacturing Company.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

B. Control system shall consist of sensors, indicators, actuators, final control elements, interface equipment, other apparatus, accessories, and software connected to distributed controllers operating in multiuser, multitasking environment on token-passing network and programmed to control mechanical systems. An operator workstation permits interface with the network via dynamic color graphics with each mechanical system, building floor plan, and control device depicted by point-and-click graphics.

2.3 COMMUNICATIONS

A. Device Requirements: Devices supplied to meet the functional and operational requirements of this specification shall conform, at a minimum, to one of the BACnet device profiles specified herein and contained in BACnet, Annex L: BACnet Building Controller (B-BC), BACnet, Advanced Application Controller (B-AAC) or BACnet Application Specific Controller (B-ASC). The interoperability requirements of such devices are contained in BACnet, Annex L.

B. Network Topology: Communication involving control devices (i.e., all types of controllers and operator interfaces) shall conform to ANSI/ASHRAE Standard 135-2004, BACnet. The network topology (architecture) shall consist of the following levels:

1. Management Level Network: Ethernet based high speed data link between standard client and server workstations.
2. Peer-to-Peer Primary Building Level Network: Ethernet based high speed data link between building controllers, advanced application controllers, servers and operator workstations.
3. Master-Slave Secondary Sub-Networks: Moderate speed data link between application specific controllers and associated building controller.

C. Management Level Network: Devices on the Management Level Network shall communicate over Ethernet utilizing standard TCP/IP, IEEE 802.3.

1. Client workstations shall direct connect to the Ethernet Management Level Network without the use of an interposing device. Servers and Operator Workstations shall be capable of simultaneous direct connection and communication with BACnet/IP and TCP/IP level networks without the use of interposing devices. The Management Level Network shall not impose a maximum constraint on the number of connected workstations.
2. Any workstation on the Management Level Network shall have transparent communication with controllers on the building level networks connected via Ethernet.
3. Any break in Ethernet communication from a workstation to the controllers on the building level networks shall result in a notification at the workstation. Any break in Ethernet communication between the standard client workstations and servers on the Management Level Network shall result in a notification at each workstation.
4. System software applications will run as a service to allow communication with Building Level Network Controllers without the need for user log in. Closing the application or logging off shall not prevent the processing of alarms, network status, panel failures, and trend information.
5. Access to the system database shall be available from any standard client workstation on the Management Level Network.
6. Client access to client-server workstation configurations over the Internet network shall be available via Web browser interface.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

7. Thin Client access to client-server workstation configurations via Windows Terminal Services shall provide multiple, independent sessions of the workstations software. Terminal Services clients shall have full functionality, without the need to install the workstation software on the local hard drive.

D. Primary Building Level Network: Devices on the Building Level Network shall communicate using BACnet/IP over Ethernet.

1. Operator Workstations, Server Workstations, All Building Controllers and Advanced Application Controllers shall directly reside on the building level BACnet/IP Ethernet network such that communications may be executed directly between Building Controllers and directly between server, Building Controllers and Advanced Application Controllers on a peer-to-peer basis. Systems that operate via polled response or other types of protocols that rely on a central processor, file server, or similar device to manage panel-to-panel or device-to-device communications shall not be acceptable.

2. This Building Level Network shall be connected to the owner's backbone network (Management Level Network). Unless otherwise specified, the connection shall be via a 10/100BASE-T port provided by the Owner. The location of the jack shall be coordinated with the owner's IT department. The Contractor shall also provide any additional data communication hardware, such as hubs and repeaters, which may be needed to interconnect the supplied BAS equipment and to connect to the Owner's backbone network.

3. All operator interfaces shall have the ability to access all point status and application report data or execute control functions for any and all other devices. Access to data shall be based upon logical identification of building equipment. No hardware or software limits shall be imposed on the number of devices with global access to the network data.

4. All devices on the building level network shall:

 a. Auto-sense 10/100 Mbps networks.
 b. Receive an IP Address from a Dynamic Host Configuration Protocol (DHCP) Server or be configured with a Fixed IP Address.
 c. Resolve Name to IP Addresses for devices using a Domain Name Service (DNS) Server on the Ethernet network.

5. The building level network shall provide the following minimum performance:

 a. Provide high-speed data transfer rates for alarm reporting, report generation from multiple controllers and upload/download efficiency between network devices. System performance shall ensure that an alarm occurring at any controller is displayed at any PC workstations, all Building controllers, and other alarm printers within 15 seconds.
 b. Message and alarm buffering to prevent information from being lost.
 c. Error detection, correction, and re-transmission to guarantee data integrity.
 d. The building level network shall allow the Building Controllers to access any data from, or send control commands and alarm reports directly to, any other Building Controller or combination of controllers on the network without dependence upon a central or intermediate processing device. Building Controllers shall send alarm reports to multiple operator workstations without dependence upon a central or intermediate processing device. The network shall also allow any Building
controller to access, edit, modify, add, delete, back up, restore all system point database and all programs.

e. The building level network shall allow the Building Controllers to assign password access and control priorities to each point individually. The logon password (at any PC workstation or portable operator terminal) shall enable the operator to monitor, adjust and control only the points that the operator is authorized for. All other points shall not be displayed at the PC workstation or portable terminal. (e.g. all base building and all tenant points shall be accessible to any base building operators, but only certain base building and tenant points shall be accessible to tenant building operators). Passwords and priorities for every point shall be fully programmable and adjustable.

f. Devices containing custom programming must reside on the Building Level Network and shall be provided with non-volatile memory.

E. Secondary Sub-Network: Devices on sub-networks shall communicate using BACnet MS/TP network protocol. Communication via LonTalk is not acceptable.

1. Sub-networks shall support a family of application specific controllers for terminal equipment.

2. The Application Specific Controllers shall communicate bi-directionally with the building level network through Building Controllers for transmission of global data.

3. A maximum of 30 terminal equipment controllers shall be configured on individual sub-network trunks to insure adequate global data and alarm response times.

4. Where indicated communication over the secondary sub-network may utilize wireless MESH topology based on IEEE 802.15.4 network. Point to point communication shall be acceptable.

F. Provide all communication media, connectors, repeaters, hubs, routers and gateways necessary for the internetwork and as necessary for communication with third party equipment control systems.

1. Router Requirements: In the event that devices are provided that do not use BACnet/IP over Ethernet or BACnet MS/TP as their communication technology, BACnet routers shall be provided that route between BACnet/IP or BACnet MS/TP and the other BACnet LAN type(s). These routers shall conform to the specifications of BACnet, Clause 6. The use of BACnet LAN types other than those specified herein for each network requires the specific approval of the Owner and Engineer.

2. Gateways: Devices that use BACnet as their native protocol are preferred. The use of gateways, in circumstances where no native BACnet device is available, requires the specific approval of the Owner and Engineer.

G. Communication services over the internetwork shall result in operator interface and value passing that is transparent to the internetwork architecture as follows:

1. Connection of an operator interface device to any one controller on the internetwork will allow the operator to interface with all other controllers as if that interface were directly connected to the other controllers. Data, status information, reports, system software, custom programs, etc., for all controllers shall be available for viewing and editing from any one controller on the internetwork.

2. All database values (e.g., objects, software, variables, custom program variables) of any one controller shall be readable by any other controller on the internetwork. This value
passing shall be automatically performed by a controller when a reference to an object name not located in that controller is entered into the controller's database. An operator/installer shall not be required to set up any communication services to perform internetwork value passing.

H. The time clocks in all controllers shall be automatically synchronized daily via the internetwork. An operator change to the time clock in any controller shall be automatically broadcast to all controllers on the internetwork. System shall automatically adjust for daylight saving and standard time.

I. Portable Operator Interface: All controllers shall have a communication port for connections with a portable operator interface using the BACnet Data Link/Physical layer protocol. Communication shall support memory downloads and other commissioning and troubleshooting operations.

J. Remote Notification Paging System: Workstations shall be configured to send out messages to numeric pagers, alphanumeric pagers, phones (via text to speech technology), SMS (Simple Messaging Service, text messaging) Devices, and email accounts based on a point's alarm condition.

1. There shall be no limit to the number of points that can be configured for remote notification of alarm conditions and no limit on the number of remote devices which can receive messages from the system.
2. On a per point basis, system shall be configurable to send messages to an individual or group and shall be configurable to send different messages to different remote devices based on alarm message priority level.
3. Remote devices may be scheduled as to when they receive messages from the system to account for operators' work schedules.
4. System must be configurable to send messages to an escalation list so that if the first device does not respond, the message is sent on to the next device after a configurable time has elapsed.
5. Message detail shall be configurable on a per user basis.
6. During a "flood" of alarms, remote notification messages shall have the ability to optimize several alarms into an individual remote notification message.
7. Workstation shall have the ability to send manual messages allowing an operator to type in a message to be sent immediately.
8. Workstation shall have a feature to send a heartbeat message to periodically notify users that they have communication with the system.

2.4 OPERATOR INTERFACE

A. Web Based Operator Interface: Provide a web based graphical interface that allows users to access the BAS data via the Internet, extranet, or Intranet. The interface shall use HTML based ASP pages to send and receive data from the BAS to a web browser.

1. All information exchanged over Internet shall be encrypted and secured via SSL provided by the Owner.
2. Access to the web interface shall be password protected. Users' rights and privileges to points and graphics shall be the same as those assigned at the BAS workstation.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

3. The web based interface shall not require modification or creation of HTML or ASP pages using an HTML editor. All graphics available at the BAS graphical workstation shall be automatically generated to a web server.

4. The web based interface shall provide the following functionality to users, based on their access and privilege rights:

 a. Login Screen: Allows the user to enter their name, password, and domain name for logging into the web server.

 b. Alarm Display: A display of current BAS system alarms to which the user has access will be displayed. Users will be able to acknowledge and erase active alarms, and link to additional alarm information including alarm messages. Any alarm acknowledgments initiated through the web interface will be recorded to the BAS system activity log.

 c. Graphic Display: A display of system graphics, including animated motion, available in the BAS system workstation will be available for viewing over the web browser. Software that requires the creation of dedicated “web” graphics in order to display via the browser interface will not be acceptable. A graphic selector list will allow users to select any graphics to which they have access. Graphic displays will automatically refresh with the latest change of values. Users will have the ability to command and override points from the graphic display as determined by their user account rights.

 d. Point Details: Users will have access to point detail information including operation status, operational priority, physical address, and alarm limits, for point objects to which they have access.

 e. Point Commanding: Users will be able to override and command points they have access to via the web browser interface. Any commands or overrides initiated via the web browser interface will be written to the BAS system central workstation activity log.

 f. Reports: Users will be able to initiate and view reports.

 g. Trend Logs: Users will be able to create, edit, and view trends for point objects to which they have access, including modification to sampling rate.

 h. Time Schedules: Users will be able to adjust time schedule parameters.

5. The web server licensing options shall allow concurrent access by a minimum of five (5) browser connections.

6. Owner’s Scope: The Owner, as required to support the web access feature, shall provide Internet connections, ISP services, as well as necessary firewalls or proxy servers. Coordinate BAS requirements with Owner as necessary.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

2.5 DDC CONTROLLERS

A. Control Units: Modular, comprising processor board with programmable, nonvolatile, random-access memory; local operator access and display panel; integral interface equipment; and backup power source.

1. Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation or diagnostic terminal unit.
2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 a. Global communications.
 b. Discrete/digital, analog, and pulse I/O.
 c. Monitoring, controlling, or addressing data points.
 d. Software applications, scheduling, and alarm processing.
 e. Testing and developing control algorithms without disrupting field hardware and controlled environment.

3. Standard Application Programs:
 a. Electric Control Programs: Demand limiting, duty cycling, automatic time scheduling, start/stop time optimization, night setback/setup, on-off control with differential sequencing, staggered start, antishort cycling, PID control, DDC with fine tuning, and trend logging.
 b. HVAC Control Programs: Optimal run time, supply-air reset, and enthalpy switchover.
 c. Programming Application Features: Include trend point; alarm processing and messaging; weekly, monthly, and annual scheduling; energy calculations; run-time totalization; and security access.
 d. Remote communications.
 e. Maintenance management.
 f. Units of Measure: Inch-pound and SI (metric).

4. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
5. Each controller shall be provided with an interactive HELP function to assist operators using portable devices and remote connected operators.
6. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

B. Local Control Units: Modular, comprising processor board with electronically programmable, nonvolatile, read-only memory; and backup power source.

1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.
2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 a. Global communications.
 b. Discrete/digital, analog, and pulse I/O.
c. Monitoring, controlling, or addressing data points.

3. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.

4. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

C. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting of the point to itself, another point, or ground will cause no damage to controllers. Protect points so that contact with a voltage up to 24-V of any duration will cause no damage to controllers.

1. Binary Inputs: Allow monitoring of on-off signals from remote devices and sensing “dry contact” closure without external power. Provide a wetting current of at least 12 mA to be compatible with commonly available control devices. Protect against effects of contact bounce and noise.

2. Pulse Accumulation Inputs: Accept up to 10 pulses per second. Conform to all requirements of Binary Inputs.

3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals. Analog Inputs shall be compatible with and field configurable to commonly available sensing devices.

4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation with three-position (on-off-auto) override switches and status lights.

5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA) with two-position (auto-manual) override switches, manually adjustable potentiometer for manual override, and status lights. Analog Outputs shall not exhibit a drift greater than 0.4% of range per year.

6. Tri-State Outputs: Provide two coordinated binary outputs for control of three-point, floating-type electronic actuators. Use of three-point, floating-type devices shall be limited to zone control and terminal unit control applications.

7. Universal I/Os: Provide software selectable binary or analog outputs. Conform to the provisions of this section that are appropriate to their designated use.

8. System Object Capacity: The system size shall be expandable to at least twice the number of input / output objects required for this project. Additional controllers (along with associated devices and wiring) shall be all that is necessary to achieve this capacity requirement. The operator interface installed for this project shall not require any hardware additions in order to expand this system.

D. Power Supplies: UL listed transformers with Class 2 current-limiting type or overcurrent protection in primary and secondary circuits for Class 2 service in accordance with NEC requirements; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:

1. Output ripple of 5.0 mV maximum peak to peak.

2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.

3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

E. Power Line Filtering:

1. Isolation for all network and field point terminations to suppress induced voltage transients consistent with the following:
 a. RF-Conduted Immunity (RFCl) per ENV 50141 (IEC 1000-4-6) at 3V
 b. Electro Static Discharge (ESD) Immunity per EN 61000-4-2 (IEC 1000-4-2) at 8 kV air discharge, 4 kV contact
 c. Electrical Fast Transient (EFT) per EN 61000-4-4 (IEC 1000-4-4) at 500 V signal, 1 kV power
 d. Output Circuit Transients per UL 864 (2,400V, 10A, 1.2 Joule max)

2. All electric wiring that serves as power for the computer system, microprocessors, or other field panels shall have surge protective devices installed to suppress induced voltage transients consistent with IEEE standard 587-1980.
 a. Unit shall provide continuous non-interrupting protection with no degradation in protection capabilities.
 b. Unit shall have instant automatic reset after safely eliminating transient surges from switching or other forms of transient overvoltages.
 c. Voltage clamping level shall be 120 percent of nominal line voltage.

3. Internal or external transient voltage and surge suppression for workstations or controllers with the following:
 a. Minimum dielectric strength of 1000 V.
 b. Maximum response time of 10 nanoseconds.
 c. Minimum transverse-mode noise attenuation of 65 dB.
 d. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

F. Transient Voltage Surge Suppression:

1. General:
 a. All SPDs shall be provided by the same manufacturer.

2. Control Power SPD:
 a. **Basis-of-Design Product:** Subject to compliance with requirements, provide Surge Suppression, Inc.; S-SPT###-30 or a comparable product by one of the following:
 1) Liebert Corporation.
 2) Current Technology.
 b. Description: Series connected type 2 SPD, Type 1 and Type 4 SPDs not permitted, listed to ANSI/UL 1449-2006 (UL 1449 3rd Edition).
 c. Peak Surge Current: 120 kA per phase.
 d. Enclosure: Plastic with mounting feet or DIN rail.
 e. Connections: 3-position screw terminal strips.
 f. Diagnostics: LED indicator lights for power and protection status.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

g. Circuit Design: Series wired design incorporating all mode protection and "True" sine-wave tracking based on the results of the Category A (2kV) Ring Wave Measured Limiting Voltages.

h. Current Rating: 30 amps.

3. BAS Hardwired Points SPD:

a. Basis-of-Design Product: Subject to compliance with requirements, provide Surge Suppression, Inc.; CLP24Ax-B or a comparable product by one of the following:

1) Liebert Corporation.
2) Current Technology.

b. Description: Series connected SPD.
c. Peak Surge Current: 10 kA per phase.
d. Enclosure: Plastic with mounting feet or DIN rail.
e. Connections: Screw terminal strips.
f. Circuit Design: Series wired design incorporating all mode protection.
g. Current Rating: 500 mA.
h. Maximum Data Rate: 2 Mbps.

4. BAS Communication Interface SPD:

a. Basis-of-Design Product: Subject to compliance with requirements, provide Surge Suppression, Inc.; DRJ45##C8-B or a comparable product by one of the following:

1) Liebert Corporation.
2) Current Technology.

b. Description: Series connected SPD.
c. Peak Surge Current: 10 kA per phase.
d. Enclosure: Plastic with mounting feet or DIN rail.
e. Connections: RJ45 modular connectors.
f. Circuit Design: Series wired design incorporating all mode protection.
g. Current Rating: 500 mA.
h. Maximum Data Rate: 100 Mbps.

2.6 ELECTRONIC SENSORS

A. Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required.

B. RTDs and Transmitters:

1. Manufacturers:

a. Siemens.
b. BEC Controls Corporation.
c. MAMAC Systems, Inc.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

2. Accuracy: Plus or minus 0.75 deg F (0.4 deg C) at mid-range.
5. Insertion Elements in Ducts: Single point, 8 inches (200 mm) long or as necessary for element to extend into middle third of duct; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft. (0.84 sq. m).
6. Averaging Elements in Ducts: 5 ft. long per 10 sq. ft. of duct cross section, flexible; use where prone to temperature stratification or where ducts are larger than 9 sq. ft. (1 sq. m).
7. Insertion Elements for Liquids: Stainless-steel socket with minimum insertion length of 2-1/2 inches (64 mm).
8. Room Sensor Cover Construction:
 a. Typical Locations: Manufacturer's standard white locking covers with temperature display, override and setpoint adjustment.
 b. Locations Subject to Tampering or Damage: Flush mount with blank stainless steel cover plate with tamper-proof screws.

C. Humidity Sensors: Capacitive sensor.

1. Manufacturers:
 a. Siemens.
 b. MAMAC Systems, Inc.
 c. Vaisala.

2. Accuracy: 2 percent full range with linear output.
3. Room Sensor Range: 0 to 100 percent relative humidity.
4. Room Sensor Cover Construction: Manufacturer's standard white locking covers with humidity display.
5. Duct Sensor: 0 to 100 percent relative humidity range with element guard and mounting plate.
6. Outside-Air Sensor: 0 to 100 percent relative humidity range with mounting enclosure, suitable for operation at outdoor temperatures of 32 to 120 deg F (0 to 50 deg C). Provide outdoor air sunshield.

D. Pressure Transmitters/Transducers:

1. Manufacturers:
 a. Siemens.
 b. BEC Controls Corporation.
 c. MAMAC Systems, Inc.
 d. Setra.
 e. Vaisala.

2. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.

 a. Accuracy: 2 percent of full scale with repeatability of 0.5 percent.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

b. Output: 4 to 20 mA.
c. Building Static-Pressure Range: -0.25- to 0.25-inch wg (-62 to 62 Pa).
d. Duct Static-Pressure Range: 0- to 5-inch wg (0 to 1240 Pa).

3. Water Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig (1034-kPa) operating pressure; linear output 4 to 20 mA. Provide suitable mounting provisions and block and bleed valves.

4. Water Differential-Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig (1034-kPa) operating pressure and tested to 300-psig (2070-kPa); linear output 4 to 20 mA. Provide suitable mounting provisions and 3-valve manifold.

5. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.

6. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA.

E. Room sensor accessories include the following:

1. Insulating Bases: For sensors located on exterior walls.
2. Adjusting Key: As required for calibration and cover screws.

2.7 STATUS SENSORS

A. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg (0 to 1240 Pa).

B. Status Inputs for Pumps: Differential-pressure switch with pilot-duty rating and with adjustable pressure-differential range of 8 to 60 psig (55 to 414 kPa), piped across pump.

C. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.

D. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.

E. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.

F. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

2.8 RELAYS

A. Control Relays: UL listed, with dust cover and LED "energized" indicator. Contact rating, configuration, and coil voltage shall be suitable for application.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

1. Relay enclosures to comply with environmental conditions or function at installed location:
 a. Dry and Clean Indoor Locations:
 1) Equipment Safety Circuits or Interlocks: Red Housing.
 2) All Other Functions: Grey Housing.
 b. Outdoor Locations: Type 4X.

2.9 OCCUPANCY SENSORS

A. Occupancy Sensor: Passive infrared, with time delay, daylight sensor lockout, sensitivity control, and 180-degree field of view with vertical sensing adjustment; for flush mounting.

2.10 FLOW MEASURING STATIONS

A. Thermistor Type Airflow Station:
 1. Manufacturers:
 a. Ebtron, Inc.
 2. Accuracy (Airflow): Plus or minus 2% of reading with repeatability of 0.25 percent.
 Flow measurement drift shall not exceed manufacturer’s repeatability statement for the life of the equipment.
 3. Accuracy (Temperature): Plus or minus 0.15 deg F (0.08 deg C).
 4. Construction: One glass encapsulated self-heated thermistor and one glass encapsulated thermistor temperature sensor for each sensing point. Support struts and brackets shall be tubular aluminum extrusion.
 5. Electronics: Microprocessor based, solid-state in aluminum enclosure with LCD display.
 Use NEMA 4 enclosure for exterior installation. Provide transmitter with 4-20 mA analog output signals.
 6. Sensor probes shall be “Plug and Play” type and shall not require matching to transmitter.
 7. Duct & Plenum Installations: Gold Series
 8. Fan Inlet: Hybrid Series

B. Velocity Pressure Airflow Station:
 1. Type: Capsule, diaphragm, bellows, bourdon tube, or solid state.
 2. Pressure sensors shall withstand up to 150 percent of rated pressure.
 3. Accuracy: Plus or minus 1% of full scale.

C. Velocity Pressure Airflow Station:
 1. Type: Multi-point, multi-axis flow ring or cross sensor. Single point or flow bar sensors are not acceptable.
 2. Sensor shall be capable of maintaining airflow to within plus or minus 5% of rated unit airflow setpoint with 1.5 duct diameters straight duct upstream from the unit.
2.11 DIGITAL ENERGY MONITORS

A. Manufacturers:
 1. Veris.
 2. Siemens.

B. Three-phase digital watt-meters with pre-wired current transmitters (CT), capable of mounting directly on a power bus, UL listed.
 1. All watt-meters electronics shall be housed within the CTs.
 2. Diagnostics visible to the installing electrician (without an operator interface) shall indicate proper operation, defective wiring or low power-factor, device malfunction, and over-load condition.
 3. The device shall comply with ANSI C12.1 accuracy specification. The minimum CT/meter combined accuracy shall be no greater than 1% of reading over a 5% to 100% of rated load. The meter shall not require calibration.
 4. The watt-meter shall directly connect to 208- or 480-V ac power feeds with no potential transformer. In-line fuses for each voltage tap phase shall be included.
 a. CTs shall not require shorting blocks.
 b. Sized to accommodate loads ranging from 100 to 2400 Amps.
 6. The information and capabilities provided by the watt-meter shall include the following:
 a. Current, per phase and three-phase total.
 b. Voltage, per phase and three-phase total, phase-to-phase and phase-to-neutral.
 c. Real Power (kW), per phase and three-phase total.
 d. Reactive Power (kVAR), three-phase total.
 e. Apparent Power (kVA), three-phase total.
 f. Power Factor, per phase and three-phase total.
 g. Consumption (kWh), three-phase total.

2.12 THERMOSTATS

A. Line-Voltage, On-Off Thermostats: Bimetal-actuated, open contact or bellows-actuated, enclosed, snap-switch or equivalent solid-state type, with heat anticipator; UL listed for electrical rating; with concealed set-point adjustment, 55 to 85 deg F (13 to 30 deg C) set-point range, 2 deg F (1 deg C) maximum differential, and vented ABS plastic cover.
 1. Electric Heating Thermostats: Equip with off position on dial wired to break ungrounded conductors.

B. Electric, Low-Limit Duct Thermostat: UL listed, vapor pressure type, snap-acting, single-pole, single-throw, manual-reset switch that trips if temperature sensed across any 12 inches (300 mm) of bulb length is equal to or below set point.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

1. Bulb Length: Minimum 20 feet (6 m).
2. Quantity: One thermostat for every 20 sq. ft. (2 sq. m) of coil surface.
3. Auxiliary Contact: For alarm indication monitoring at BAS.

2.13 ACTUATORS

A. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.

1. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
2. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
3. Nonspring-Return Motors for Valves Larger Than NPS 2-1/2 (DN 65): Size for running torque of 150 in. x lbf (16.9 N x m) and breakaway torque of 300 in. x lbf (33.9 N x m).
4. Spring-Return Motors for Valves Larger Than NPS 2-1/2 (DN 65): Size for running and breakaway torque of 150 in. x lbf (16.9 N x m).
5. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft. (2.3 sq. m): Size for running torque of 150 in. x lbf (16.9 N x m) and breakaway torque of 300 in. x lbf (33.9 N x m).
6. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft. (2.3 sq. m): Size for running and breakaway torque of 150 in. x lbf (16.9 N x m).

B. Electronic Actuators:

1. Manufacturers:
 a. Belimo Aircontrols (USA), Inc.
 b. Siemens.
2. Valves: Size for torque required for valve close off at maximum pump differential pressure.
3. Dampers: Size for torque required for damper seal at maximum design conditions and valve close-off pressure for system design.
4. Coupling: V-bolt dual nut clamp with a V-shaped, toothed cradle; directly couple and mount to the valve bonnet stem; or ISO-style direct-coupled mounting pad.
5. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
7. Power Requirements (Two-Position Spring Return): 24 -V ac.
8. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.
9. Proportional Actuators shall have an external, built-in switch to allow the reversing of direction of rotation.
10. Actuators shall be provided with a conduit fitting and a minimum of three-foot electrical cable and shall be pre-wired to eliminate the necessity of opening the actuator housing to make electrical connections.
11. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

12. Temperature Rating: Minus 22 to plus 122 deg F (Minus 30 to plus 50 deg C).
13. Temperature Rating (Smoke Dampers): Minus 22 to plus 250 deg F (Minus 30 to plus 121 deg C).
15. The manufacturer shall warrant all components for a period of 5 years from the date of production, with the first two years unconditional.

2.14 CONTROL CABLE

A. Electronic and fiber-optic cables for control wiring are specified in Section 230923 "Control-Voltage Electrical Power Cables."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine the project plans thoroughly for control device and equipment locations. Report any discrepancies, conflicts, or omissions to the Architect/Engineer for resolution before starting rough-in work.

B. Inspect the site to verify that equipment is installable as shown. Report any discrepancies, conflicts, or omissions to the Architect/Engineer for resolution before starting rough-in work.

C. Examine drawings and specifications for work of others. Report inadequate headroom or space conditions or other discrepancies to the Engineer and obtain written instructions for changes necessary to accommodate work of this section with work of others. The Controls Contractor shall perform at his expense necessary changes in specified work caused by failure or neglect to report discrepancies.

D. Verify that conditioned power supply is available to control units and operator workstation.

E. Verify that duct-, pipe-, and equipment-mounted devices are installed before proceeding with installation.

3.2 PROTECTION

A. Control Contractor shall protect against and be liable for damage to work and to material caused by Contractor's work or employees.

B. Control Contractor shall be responsible for work and equipment until inspected, tested, and accepted.

C. Protect material not immediately installed. Close open ends of work with temporary covers or plugs during storage and construction to prevent entry of foreign objects.
3.3 INSTALLATION

A. Connect and configure equipment and software to achieve sequence of operation specified.

B. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 60 inches (1530 mm) above the floor.

C. Provide flush mount, tamper proof room sensors at the following locations:
 1. Entrances.
 2. Public areas.
 3. Communication rooms.
 4. Mechanical and electrical rooms.
 5. Elevator equipment rooms.
 6. Corridors.
 7. Where indicated.

D. Install automatic dampers according to Section 233300 "Air Duct Accessories."

E. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.

F. Install labels and nameplates to identify control components according to Section 230553 "Identification for HVAC Piping and Equipment."

G. Install hydronic instrument wells, valves, and other accessories according to Section 232113 "Hydronic Piping."

H. Install refrigerant instrument wells, valves, and other accessories according to Section 232300 "Refrigerant Piping."

I. Install duct volume-control dampers according to Section 233113 "Metal Ducts" and Section 233116 "Nonmetal Ducts."

J. Install electronic and fiber-optic cables according to Section 271500 "Communications Horizontal Cabling."

3.4 INSTALLATION OF SENSORS

A. Install sensors according to manufacturer’s recommendations.

B. Sensors shall be readily accessible and installed in such a manner as to allow for easy replacement.

C. Sensors must be installed in such a manner that prevents condensation from making direct contact with the sensor’s electronic components.

D. Mount sensors rigidly and adequately for operating environment.

E. Air seal wires attached to sensors in their raceways or in the wall to prevent sensor readings from being affected by air transmitted from other areas.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

F. Use averaging sensors in mixing plenums and hot and cold decks. Install averaging sensors in a serpentine manner vertically across the duct. Support each bend with a capillary clip.

G. Install mixing plenum low-limit sensors in a serpentine manner horizontally across the duct. Support each bend with a capillary clip.

H. Install pipe-mounted temperature sensors in wells. Install liquid temperature sensors with heat-conducting fluid in thermal wells.

I. Install outdoor air temperature sensors on north wall at designated location with sun shield.

J. Differential Air Static Pressure:

1. Supply Duct Static Pressure: Pipe high-pressure tap to duct using a pitot tube. Make pressure tap connections according to the manufacturer’s recommendations.

2. Return Duct Static Pressure: Pipe low-pressure tap to duct using a pitot tube. Make pressure tap connections according to the manufacturer’s recommendations.

3. Building Static Pressure: Pipe pressure sensor’s low-pressure to the static pressure port located on the outside of the building through a high-volume accumulator. Pipe high-pressure port to a location behind a thermostat cover.

K. Piping to pressure transducer pressure ports shall contain a capped test port adjacent to the transducer.

L. Pressure transducers, except those controlling individual room controllers, shall be located in control panels, not on monitored equipment or on ductwork. Mount transducers in a vibration-free location accessible for service without the use of ladders or special equipment.

M. Mount gauge tees adjacent to air and water differential pressure taps. Install shut-off valves before tee for water gauges.

3.5 ELECTRICAL WIRING AND CONNECTION INSTALLATION

A. Provide all electrical work required as an integral part of the digital control work. Install a complete wiring system for the control system including wire and miscellaneous materials as required for mounting and connecting control devices.

B. Electrical control and power wiring, contactors, and relays required for BAS equipment, damper and valve actuators, and local control panels, not specifically identified in the Division 26 sections as electrical work or shown on the electrical drawings, is work of this section. If additional circuits need to be designated for this equipment, the Control Contractor shall include the cost to add these circuits.

C. Control panels serving equipment fed by emergency power shall also be served by emergency power.

D. Install raceways, boxes, and cabinets for low-voltage conductors according to Section 260533 "Raceways and Boxes for Electrical Systems."
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

E. Install building wire and cable according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

F. Install pathways, boxes, and cabinets for control-voltage cabling according to Section 230928 "Pathways for Control-Voltage Cables."

G. Install signal and communication cable according to Section 230923 "Control-Voltage Electrical Power Cables."
 1. Conceal cable, except in mechanical rooms and areas where other conduit and piping are exposed.
 2. Install exposed cable in raceway.
 3. Install concealed cable in raceway.
 4. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
 5. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
 6. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
 7. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.

H. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.

I. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

3.6 SURGE PROTECTIVE DEVICES INSTALLATION

A. Install surge protective devices as close as practical to the electrical panel or dedicated electronic equipment to be protected. The SPD shall be close connected to the panel in a position near the panel board neutral bus bar or positioned so that the overall lead length will be minimal.

B. Install surge protection devices in a manner consistent with proper and acceptable industry wiring practice. Install connection leads as short and straight as possible while avoiding sharp bends. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.

C. Surge protective devices shall be installed at the following locations:
 1. DDC panel communication interfaces.
 2. VFD communication interfaces.
 3. Exterior BAS hardwired terminations. Provide multiple SPDs to accommodate quantity of hardwired terminations specified.
 4. Control transformers.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

3.7 PROGRAMMING

A. Provide software programming for the system as per specifications and adhere to the sequences of operation provided.

B. Provide all other system programming necessary for the operation of the system but not specified in the sequences of operation.

C. Imbed into the control program sufficient comment statements to clearly describe each section of the program. The comment statements shall reflect the language used in the sequence of operation.

D. Provide a separate program for each major HVAC system.

3.8 CONTROLLERS

A. Provide a separate controller for each major HVAC system. Controller shall be located within the same room as equipment. All points associated with a single system shall reside in a single controller. Points used for control loop reset, such as outside air or space temperature, are exempt from this requirement.

B. Route all controllers for terminal units through the controller for the air handling unit associated with the terminal units.

C. Install software in controllers.

3.9 OPERATOR INTERFACE

A. Provide all the labor necessary to install, initialize, start-up, and trouble-shoot all operator interface software and their functions as described in this section. This includes any operating system software, the operator interface database, and any third party software installation and integration required for successful operation of the operator interface.

B. Install software in operator workstation(s). Implement all features of programs to specified requirements and as appropriate to sequence of operation.

C. Upgrade and otherwise modify existing system software to integrate new control sequences into existing system as appropriate to sequence of operation.

D. Dynamic Data Display:

1. Point lists shall be organized on a per field device basis.
2. If the software provides for the sub-division of point data within a field device, the data shall be organized by physical sub-system as a minimum (fan section, mixed air section, etc.)
3. The workstation shall be configured to automatically update values without any action by the operator.
4. Value updates in points lists shall be configured to update at least once every 5 seconds.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

5. Binary data shall be configured to display state descriptors (OFF, ON, OPEN, CLOSED, etc.) and not the states of 0 and 1.
6. Analog data displays shall include engineering units and shall not report values more accurate than the device can measure. Values shall be reported consistent with the following:
 a. Temperatures shall be reported to 1 decimal place.
 b. Percentages shall be reported as integers.
 c. Velocities shall be reported as integers.
 d. Flow volumes shall be reported as integers.
 e. Pressures shall be reported to 1 or 2 decimal places, as determined by the control setpoint.
 f. Consumptions shall be reported as integers.
 g. Dampers and valve positions shall be reported as “% OPEN”.

7. All temporary points used for debugging or tuning, such as PID loop outputs, shall be removed from the display.
8. All text fields associated with a specific element of data shall be programmed to provide the maximum amount to the operator.

E. Graphic Pages:

1. Hierarchy:
 a. The organization of graphic pages shall be from a global level down to a very detailed level through a series of links.
 b. Linking shall allow the operator to move down the hierarchy, up the hierarchy, and laterally within the hierarchy.

2. Hierarchy Outline:
 a. Site Plan Page: A visual representation of the site (map). One page of multiple linked pages depending on the size of the site plan.
 1) Link to individual building graphic pages.
 2) Display outdoor weather conditions.
 b. Utility Management Page: A summary of data on the utility consumption for the site:
 1) Link to the site plan.
 2) Display
 a) Utility consumption data.
 b) Demand data.
 c) Voltages, current, and power factors.
 d) Demand control actions current in effect.
 3) Presenting the utility management data may require more than one graphic page to effectively report the data from multiple meters.
 c. Building Graphic Page: Typically a picture of the building. One page per building.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

1) Link to floor plans within the building.
2) Link to central plant graphics where the plant serves the entire building.
3) Link to delivery systems if the delivery system serves the entire building.
4) Link up to the site plan.

d. Floor Plan Page: This shall be a two-dimensional plan of a floor area. A minimum of one page per floor per building is required. Where floor plans are large, multiple linked pages are required. For each control zone, the value of the controlled parameters shall be displayed. This will typically be the lighting status, temperature, temperature setpoints, zone discharge air temperatures, and relative humidity.

1) Link up to the Building page.
2) Link up to the Site page.
3) Link to any delivery system that serves the floor plan area (air handling unit is typical).
4) Link to time schedules that affect the systems that serve the area.
5) Link to a Terminal Unit Summary page where multiple zones on the floor are served by unitary control devices, such as VAVs or fan coil units.
6) Individual control zones shall be identified.
7) The location of terminal equipment serving each zone shall be shown.
8) The location of sensors installed in the occupied space shall be shown.
9) Where room numbers are available, they shall be shown.

e. Delivery System Page: A graphical representation of an air or water delivery system, such as an air handling unit, rooftop air handling unit, computer room air conditioning unit. One page for each delivery system.

1) If the Delivery System serves a specific floor area, link up to the Floor Area page.
2) Link up to the Building page.
3) Link up to the Site Plan page.
4) Link to the Central Plant page if the Delivery System is served by a Central Plant.
5) If the Delivery System supplies multiple terminal devices, link to a Terminal Equipment Summary page.
6) Link to a Delivery Systems Configuration page.
7) The graphical representation of the equipment shall represent the true physical characteristics of the installed system.
8) Display:
 a) Process variables.
 b) Commands to end devices.
 c) Status of end devices.
 d) Status of different modes.
 e) Alarm points.
9) Link to any time schedules that affect the system operation.
10) Link to any pre-configured trend charts for the system.
f. **Delivery System Configuration Page:** On this page, the operator is given access to the configuration parameters for the delivery system. Data shall be presented in a tabular format. The type of data on this page is not changed frequently but the operator may wish to view it frequently. One page per Delivery System is required.

1) **Display:**
 a) Setpoints.
 b) Tuning parameters.
 c) Calibration parameters.
 d) Application parameters.
 e) Reset schedules.
 f) Lead /Lag information.
 g) Time schedules.
2) Link up to the Delivery System page.
3) Link up to the Building page.
4) Link up to the Site Plan page.

g. **Terminal Equipment Summary Page:** On this page, the dynamic data and setpoints that are associated with multiple terminal units shall be presented in tabular format. The objective is to present a summary of terminal unit performance for an area of the facility. One page is required for each group of terminal units. Multiple linked pages may be used if there are a large number of terminals served by one delivery system.

1) **Display in the table:**
 a) Process variables.
 b) Setpoints for each process.
 c) Command to each end device.
 d) Status of each end device.
 e) Load factors such as terminal load for a VAV terminal unit.
2) Link to the page for each Terminal Unit.
3) Link up to the Delivery System page.
4) Link up to the Floor Plan page.
5) Link up to the Building page.
6) Link up to the Site Plan page.

h. **Terminal Unit Page:** A graphical representation of a terminal unit such as a VAV terminal or fan coil terminal. One page for each terminal.

1) Link up to the Terminal Summary page.
2) Link up to the Floor Plan page.
3) Link up to the Building page.
4) Link up to the Site Plan page.
5) The graphical representation of the equipment shall represent that actual installed terminal unit.
6) **Display:**
 a) Process variables.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

b) Setpoints for each process.
c) Command to each end device.
d) Status of each end device.
e) Modes (auto, heat, cool, etc.).
f) Capacity indicators (terminal load, %heat, %cool, etc.).
g) Reset schedules.
h) Occupancy commands and status.
i) Alarm points.

3. For all points on a graphic page that are subject to being under manual or test mode, the display shall indicate when test mode or manual mode has been applied to the point.

4. Graphic Page Requirements:

a. The sequence of operations and points lists define the buildings and all of the equipment items for which graphic pages shall be constructed as described above.

b. The Contractor shall develop similar additional graphic pages to be defined during the construction period as follows:

1) Up to 5 additional pages per building.
2) Up to 20 additional global pages.

F. Alarm Processing:

1. All alarms required by the sequence of operation shall be fully configured for delivery to the operator workstations and the alarm files.

2. A common alarm file shall be established to receive alarms from all of the field devices.

3. A separate alarm file shall be established on a per building basis to receive just the alarms from that building.

4. The alarm messages shall be descriptive and include as a minimum:

a. System identification.
b. Date.
c. Time to the second.
d. Nature of the alarm, such as high value, low value, or failure.

5. The system shall be configured to send an alarm message on return to normal.

6. All users shall receive all alarms.

G. Reports:

1. All reports and trends required by the sequence of operation shall be fully configured for delivery to the operator workstations.

2. All trends shall be configured to retain all historical data samples for a minimum of one month prior to the current date and time.

a.

3.10 BACNET CONFIGURATIONS

A. BACnet Interoperability by Area:
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

1. Data Sharing: Data Sharing requirements apply to the exchange of information between BACnet devices for archival storage, generating graphics and reports, the sharing of common sensor or calculated values, carrying out interlocked control strategies, and the modification of setpoints or other operational parameters. All such data to be exchanged shall be represented as BACnet objects and conveyed using BACnet messages. Only standard BACnet objects and messages may be used to implement data sharing requirements unless the Owner explicitly approves the non-standard extensions. Any extensions to BACnet shall be fully documented in the manner used within the BACnet standard. Submission of such documentation is a prerequisite for obtaining approval of an extension.

 a. Points List: The Contractor shall provide devices installed and configured with all points indicated in the BAS points list. For the sequence of operations and other functionality described in this specification to be fully implemented, the Contractor shall provide any additional points needed.

 b. Data Presentation: In the event that workstation/web server capabilities have been specified, the following characteristics shall apply to graphic displays:

 1) The graphic displays shall include schematic diagrams of the systems being displayed.
 2) When a graphic display is being viewed all values displayed shall be updated when a change of value (COV) notification is received or, if COV is not implemented, within five seconds.
 3) Any data value from any networked device shall be available for plotting at a workstation in real time. The operator shall be able to select binary and analog data concurrently and to plot multiple instances of each data type on the same screen. The operator shall be able to select sampling intervals from 1 second to 60 seconds. For devices that implement COV reporting, the operator shall be able to select this as the means to update the plot. It shall be possible to save such real-time plots for subsequent recall.

 c. Monitoring of Any Property: The operator shall be able to display any value of any property of any object from any networked device including all properties required by BACnet, all supported optional properties, and any proprietary extensions.

 d. Global Object Definitions: The control system shall be configured with system-wide unique BACnet objects as needed to convey all globally significant information necessary to implement the control strategy.

 e. Setpoint and Parameter Modifications: Operators with appropriate authority shall be able to modify all control loop setpoints and tuning parameters via BACnet messages initiated through operator interaction with graphics displays.

 f. Peer-to-Peer Dependencies: All BACnet devices shall be installed and configured to exchange data values directly, without the need for operator or workstation intervention, to implement the sequence of operations specified in the mechanical system drawings and to share global data values.

2. Alarm and Event Management:
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

a. Alarm and Event Management is the exchange of data between BACnet devices related to the occurrence of predefined conditions that meet specific criteria. Such conditions are called “events” and may be the basis for the initiation of a particular control action in response or the simple logging of the event’s occurrence. The event may also be deemed to represent a condition that constitutes an “alarm” requiring human acknowledgment and intervention.

b. All alarms and events shall be implemented using standard BACnet event detection and notification mechanisms. Either intrinsic reporting or algorithmic change reporting may be used but the intrinsic reporting method is preferred. See BACnet, Clause 13.

c. Alarm Lists:

1) The Contractor shall provide devices installed and configured to detect alarms and events for the points indicated in the system drawings. Software logic shall be provided to avoid nuisance alarms, e.g., no temperature or status alarms shall be generated when fan systems are not running or during start-up and shut-down transitions. It shall be possible to configure a delay between the occurrence of an alarm condition and its enunciation.

2) Alarms shall appear at the BAS and any local operator workstation(s) within five seconds of their occurrence. The workstations shall display an alarm message window that appears on top of any other open windows. The alarm message window shall have a distinctive color and appearance to attract the operator’s attention. Operators with sufficient privilege shall be able to configure the workstation to emit an audible signal (or not) when an alarm message is received.

3) Alarms that require operator acknowledgement shall cause the alarm window to remain active until such an acknowledgement is received. If multiple alarms are received, unacknowledged alarms shall be displayed on a first come first served basis grouped by priority, with the highest priority alarms displayed first.

4) Alarms shall be distributed using the BACnet notification class mechanism. Assignment of classes and destinations shall be configured according to details provided by the Owner. One destination shall, in all cases, be the BAS.

5) BACnet provides a mechanism for prioritizing alarm and event notification messages using a numerical range of 0-255 with 0 being the highest priority and 255 being the lowest priority. Priorities shall be consistent with the safety requirements of UL 864 (applies to fire systems) and UL 1076 (applies to security systems).

d. Alarm Acknowledgment: Alarms shall be acknowledged through the BAS alarm acknowledgement process.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

e. Alarm Summarization: Alarm summarization shall be handled through the BAS alarm summarization process.

f. Alarm Parameter Adjustment: Operators with sufficient privilege shall be able to change alarm parameters for all standard BACnet event types.

g. Alarm Routing Adjustment: Operators with sufficient privilege shall be able to change alarm routing (BACnet notification classes) for each alarm including the destination for each type of alarm and alarm priority, the day of week and time of day, and the type of transition involved (TO-OFFNORMAL, TO-NORMAL, etc.).

3. Scheduling: Scheduling is the exchange of data between BACnet devices related to the establishment and maintenance of dates and time at which specified output actions are to be taken. All schedules shall be implemented using BACnet objects and messages.

a. Schedule Lists:

1) The Contractor shall provide devices installed and configured with start/stop, mode change, and night setback schedules as defined in the sequence of operations. As part of the installation process, the Contractor shall configure vacation, holiday, and any special event schedules as provided by the Owner.

2) The system shall have the ability to program alterations to programmed operating schedules based on the priority of events and shall include the following scenario:

a) Based on operator privileges, the operator shall have the ability to temporarily override the programmed schedule of equipment. Operational override of a programmed schedule shall be for a specific duration following which the schedule shall revert back to the preprogrammed schedule.

b. Display of Start and Stop Times and Actions: An operator shall be able to inspect the content of any schedule and determine the specific control actions that will occur at any time, on any date. For any particular device or system parameter that is the subject of a schedule, an operator shall be able to determine the schedule of actions related to that particular device or parameter.

c. Modification of Schedules: All calendar entries and schedules shall be modifiable from the BAS or local workstation by an operator with sufficient privilege.

4. Trending: Trending is the accumulation of (time, value) data pairs at specified rates for a specified duration. Trends are distinguished from real-time plotting of data by the fact that the data are destined for long-term storage.

a. Archival Storage of Data: Archival storage of data will be handled by the BAS. However, the Owner may specify local trend archiving and display through the use of BACnet Trend Log objects.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

b. Modification of Trend Log Parameters: An operator with sufficient privilege shall be able to change the data points to be logged, the sampling rate, and the duration of a trend log.

5. Device and Network Management: Device and network management is the exchange of data between BACnet devices concerning the operation and status of specific devices. If local workstation capabilities are provided, the following functions shall be available:

a. Display of Device Status Information: Operators shall be able to display at any time the operational status of any device on the BACnet internetwork.

b. Display of BACnet Object Information: Operators shall be able to display, at any time, any property of any BACnet object. Operators shall be able to display property values of objects grouped by object type, object location, and building system.

c. Silencing Devices that are Transmitting Erroneous Data: Operators shall be able to direct a field device to stop transmitting event, alarm or COV notifications until a subsequent command to resume transmissions is received.

d. Time Synchronization: Operators shall be able to set the time and date in any device on the network that supports time-of-day functionality. The operator shall be able to select to set the time and date for an individual device, or all devices on a single local network.

e. Remote Device Reinitialization: Operators shall have the ability to issue reinitialization commands to any device that supports remote reinitialization.

f. Backup and Restore: Operators shall have the ability to backup and restore all BACnet devices on the network that support this capability.

g. Configuration Management of Half-Route, Routers and BBMDs: Operators shall have the ability to display and modify the routing table entries in all supplied BACnet half-routers, and routers and the broadcast distribution and foreign device registration tables in all BBMDs.

B. BACnet Objects:

1. The naming convention shall be reviewed and coordinated with the Owner, Commissioning Authority, and Engineer prior to implementation.

2. Device Object Names:

a. System point names shall be modular in design, allowing easy operator interface without the use of a written point index. The naming convention shall be based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. Names can be up to 254 characters in length, without embedded spaces. Only the characters A-Z, 0-9, ".", and "-" may be used. The goal is the shortest descriptive, but unambiguous, name. For example, if
there is only one chilled water pump, "CHW-P1", a valid name would be "FSU.SMITH-HALL.CHW-P1.STATUS".

b. These names should be used for the value of the "Object Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the BAS name are the same.

3. Device Instance Numbers:

a. BACnet allows 4194305 device instances per BACnet internetwork, each of which must be unique. Coordinate with the owner, engineer and commissioning agent to develop or expand on a unique naming convention. The following is an example of a naming convention that may be used as a starting point.

b. Device Instance = "FFFFNDDD" where:

 FFFF = Facility Code (see below)
 N = 0-9 This allows up to 10 networks per facility or building.
 DD = 00-99 This allows up to 100 devices per network.

c. Facility codes could be building numbers, address numbers, etc. Note however that four digit numbers above 4193 our out of range; therefore, it may make sense to provide a range of numbers to use as an open "wildcard" range.

4. Non-Device Object Names: Objects other than Device objects shall be named in a manner analogous to Device objects.

5. Non-Device Instance Numbers: The instance numbers for objects other than Device objects may be assigned at the Contractor’s discretion subject only to the constraint that they be unique for a given object type within a given device.

6. Issues Relating to Specific BACnet Object Types:

a. Analog Input, Output, and Value: All Analog Input, Analog Output, and Analog Value objects shall have the capability of using the Change of Value (COV) reporting mechanism and the COV Increment property shall be writable using BACnet services.

b. Binary Input: The Inactive Text and Active Text properties of Binary Input objects shall be configured with text string values as indicated on the points list. Binary Input objects shall support COV reporting.

c. Binary Output: The Inactive Text and Active Text properties of Binary Output objects shall be configured with text string values as indicated on the points list. All Binary Output objects associated with motor on/off status shall track changes of state and runtime. Binary Output objects shall support COV reporting.

d. Binary Value: The Inactive Text and Active Text properties of Binary Value objects shall be configured with text string values as indicated on the points list. Binary Value objects shall support COV reporting.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

7. Calendar:
 a. Devices providing scheduling capability shall also provide at least one Calendar object with a capacity of at least ten entries. Operators shall be able to view the calendar object and make modifications from any BACnet workstation on the network.
 b. If the Calendar's Date List property is writable using BACnet services, all calendar entry data types shall be supported.

8. Loop: All control loops using any combination of proportional, integral, and/or derivative control shall be represented by BACnet Loop objects. Operators with sufficient authority shall be able to adjust at least the Update Interval, Setpoint, Proportional Constant, Integral Constant, and Derivative Constant using BACnet services. Loop objects shall support COV reporting.

9. Multi-state Input, Output, and Value: The text to be used for the Multi-state object types shall be determined from the points list. Feedback Value shall be determined by sensing the actual condition or mode of the device. All Multi-state objects shall support COV reporting.

10. Schedule: All building systems with date and time scheduling requirements shall have schedules represented by BACnet Schedule objects. All operators shall be able to view the entries for a schedule. Operators with sufficient privilege shall be able to modify schedule entries from any BACnet workstation. Required schedules are shown on the drawings as part of the occupied and unoccupied modes.

11. Dynamic Object Creation: BACnet Building Controllers shall be configured to allow the dynamic creation of Trend Log, Calendar, and Schedule objects by means of the BACnet Create Object service. This shall be possible from any supplied BACnet workstation by operators with appropriate authority.

C. Local Area Networks:

1. These following requirements are specific to the integration of multiple BACnet networks, possibly on different LAN types, into a single BACnet internetwork.

2. Network Numbering:
 a. The naming convention shall be reviewed and coordinated with the owner, commissioning agent and engineer prior to implementation.
 b. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is an owner assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internetwork.
 c. Network numbers are thus formed as follows: Network Number = "FFFFN"
 where:
 FFFF = Facility Code
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

N = 0-9 Allows up to 10 networks per facility or building.
N = 0 will generally be assigned to the Building Level Network. Normally, this network is connected to the owner’s management level network. The additional N-numbers will be assigned to any MS/TP networks as required.

3. IP Address Assignments: The Contractor shall contact the owner’s IT department for assignment of IP addresses prior to beginning device configuration.

3.11 FIELD QUALITY CONTROL

A. Manufacturer’s Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

B. Perform the following field tests and inspections and prepare test reports:

1. Operational Test: After electrical circuitry has been energized, start units to confirm proper unit operation. Remove and replace malfunctioning units and retest.
2. Test and adjust controls and safeties.
3. Test calibration of electronic controllers by disconnecting input sensors and simulating operation with compatible signal generator.
4. Test each point through its full operating range to verify that safety and operating control set points are as required.
5. Test each control loop to verify stable mode of operation and compliance with sequence of operation. Simulate and observe each operational mode by overriding and varying inputs and schedules. Adjust PID actions. Use Ziegler-Nichols rules for tuning PID controllers. PI control loops shall exceed no more than a 25% maximum overshoot in a step response.
6. Test each system for compliance with sequence of operation.
7. Test software and hardware interlocks.

C. DDC Verification:

1. Verify that instruments are installed before calibration, testing, and loop or leak checks.
2. Check instruments for proper location and accessibility.
3. Check instrument installation for direction of flow, elevation, orientation, insertion depth, and other applicable considerations.
4. Check instrument tubing for proper fittings, slope, material, and support.
5. Check installation of air supply for each instrument.
6. Check flow instruments. Inspect tag number and line and bore size, and verify that inlet side is identified and that meters are installed correctly.
7. Check pressure instruments, piping slope, installation of valve manifold, and self-contained pressure regulators.
8. Check temperature instruments, material and length of sensing elements.
9. Check control valves. Verify that they are in correct direction.
10. Check air-operated dampers. Verify that pressure gages are provided and that proper blade alignment, either parallel or opposed, has been provided.
11. Check DDC system as follows:
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

a. Verify that DDC controller power supply is from emergency power supply, if applicable.
b. Verify that wires at control panels are tagged with their service designation and approved tagging system.
c. Verify that spare I/O capacity has been provided.
d. Verify that DDC controllers are protected from power supply surges.

D. Replace damaged or malfunctioning controls and equipment and repeat testing procedures.

3.12 ADJUSTING

A. Calibrating and Adjusting:

1. Completely adjust or calibrate, ready for use, all thermostats, sensors, transducers, valves, damper operators, relays, etc., provided under this specification.
2. Make three-point calibration test for both linearity and accuracy for each analog instrument.
3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
4. Control System Inputs and Outputs:
 a. Check analog inputs at 0, 50, and 100 percent of span.
 b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 c. Check digital inputs using jumper wire.
 d. Check digital outputs using ohmmeter to test for contact making or breaking.
 e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.

5. Flow:
 a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
 b. Manually operate flow switches to verify that they make or break contact.

6. Pressure:
 a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
 b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.

7. Temperature:
 a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
 b. Calibrate temperature switches to make or break contacts.

8. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

9. Stroke and adjust control valves and dampers with positioners, following manufacturer’s recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.
10. Provide diagnostic and test instruments for calibration and adjustment of system.
11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.

B. Adjust initial temperature and humidity set points.

C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

3.13 COMMISSIONING

A. Provide at least two persons equipped with two-way communication, including the control technician responsible for system programming during construction, to assist the Engineer for the duration of the commissioning process.

B. Provide Engineer with full access, including remote login capabilities and temporary administrative privileges, to Building Automation System (BAS) during commissioning process.

1. Provide Engineer with any additional third-party software required for remote login capabilities.
2. The Control Contractor shall be responsible for all costs associated with the Engineer connecting to the Owner’s VPN.

C. Demonstration:

1. Engineer will be present to observe and review system demonstration. Notify Engineer at least 10 days before system demonstration begins.
2. Demonstration shall follow process submitted and approved under under “Action Submittals” of this section.
3. Demonstrate actual field operation of each sequence of operation as specified.
4. Demonstrate calibration and response of any input and output points requested by Engineer. Provide and operate test equipment required to prove proper system operation.
5. Demonstrate compliance with Article “System Performance”.
6. Demonstrate compliance with sequences of operation through each operational mode.
7. Demonstrate complete operation of operator interface.
8. Demonstrate each of the following:
 a. DDC Loop Response: Supply graphical trend data output showing each DDC loop’s response to a set point change representing an actuator position change of at least 25% of full range. Trend sampling rate shall be from 10 seconds to 3 minutes, depending on loop speed. Each sample’s trend data shall show set point, actuator position, and controlled variable values. Engineer will require further tuning of each loop that displays unreasonably under- or over-damped control.
 b. Demand Limiting: Supply trend data output showing demand-limiting algorithm action. Trend data shall document action sampled each minute over at least a 30-
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

minute period and shall show building kW, demand-limiting set point, and status of set points and other affected equipment parameters.

c. Building fire alarm system interface.
d. Trend logs for each system: Trend data shall indicate set points, operating points, valve positions, and other data as specified in the points list provided with each sequence of operation. Each log shall cover three 48-hour periods and shall have a sample frequency not less than every 10 minutes or as specified on its points lists. Logs shall be accessible through system’s operator interface and shall be retrievable for use in other software programs as specified.

9. Tests that fail to demonstrate proper system operation shall be repeated after Contractor makes necessary repairs or revisions to hardware or software to successfully complete each test.

D. Cost of Re-Testing:

1. The cost for the Sub-Contractor to retest a start-up check, calibration, or functional test, if they are responsible for the deficiency, shall be theirs. If they are not responsible, any cost recovery for retesting costs shall be negotiated with the Contractor.

2. For a deficiency identified, not related to any start-up fault, the following shall apply: The Engineer, Contractor and any applicable Sub-Contractors will retest the equipment once at no “charge”. However, the time and expenses for the Engineer to direct a second retest shall be charged to the Contractor. The Contractor shall be responsible for any cost recovery for retesting costs from the party responsible.

3. The time and expenses for the Engineer to direct any retesting required because a specific start-up or checkout test item, reported to have been successfully completed, but determined during functional testing to be faulty, shall be charged to the Contractor. The Contractor shall be responsible for any cost recovery for retesting costs from the party responsible for executing the faulty start-up or checkout test item.

E. Refer to Section 019113 “General Commissioning Requirements” for additional requirements.

3.14 ACCEPTANCE

A. After tests described in this specification are performed to the satisfaction of both the Engineer and the Owner, Engineer will accept control system as meeting completion requirements. Engineer may exempt tests from completion requirements that cannot be performed due to circumstances beyond Contractor’s control. Engineer will provide a written statement of each exempted test. Exempted tests shall be performed as part of the warranty.

B. Control system shall not be accepted until completed demonstration forms and checklists are submitted and approved. Refer to this section “Submittals.”

3.15 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner’s maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Section 017900 "Demonstration and Training" and Section 230100 “General Provisions for HVAC”.

District Two Medical Examiner's Office
15103 - V.E. Set

230900 - 44
Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC (continued)

3.16 TRAINING

A. Engage a factory-trained representative to provide full instruction to designated personnel in the operation and maintenance of the building automation system. Orient the training specifically to the system installed. Instructors shall be thoroughly familiar with the subject matter they are to teach.

B. Provide a training manual for each student at each training phase that describes in detail the data included in each training program. Provide one additional copy for archiving.

C. Conduct training at the site at a time mutually agreeable between the Owner, Commissioning Authority and Contractor and the contractor prior to final acceptance.

D. Provide course outline and materials according to Article “Submittals.” Provide one copy of training material per student.

END OF SECTION 230900
Section 230923 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. 50/125-micrometer, multimode optical fiber cabling.
2. RS-232 cabling.
3. Low-voltage control cabling.
5. Identification products.

1.3 DEFINITIONS

A. EMI: Electromagnetic interference.

B. IDC: Insulation displacement connector.

C. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified layout technician, installation supervisor, and field inspector.

B. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Maintenance Data: For wire and cable to include in maintenance manuals.
Section 230923 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES (continued)

1.7 QUALITY ASSURANCE

A. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E 84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

1. Flame-Spread Index: 25 or less.
2. Smoke-Developed Index: 50 or less.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.

1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical fiber flashlight or optical loss test set.
2. Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.

1.9 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install optical fiber cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 PATHWAYS

A. Conduit and Boxes: Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems." Flexible metal conduit shall not be used.

1. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.
2.

2.2 RS-232 CABLE

A. Standard Cable: NFPA 70, Type CM.

1. Paired, two pairs, No. 22 AWG, stranded (7x30) tinned-copper conductors.
2. Polypropylene insulation.
3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
Section 230923 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES (continued)

4. PVC jacket.
5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned-copper drain wire.

2.3 LOW-VOLTAGE CONTROL CABLE

A. Paired Cable: NFPA 70, Type CMG.

1. One pair, twisted, No. 18 AWG, stranded (19x30) tinned-copper conductors.
2. PVC insulation.
3. Unshielded.
4. PVC jacket.
5. Flame Resistance: Comply with UL 1581.

2.4 CONTROL-CIRCUIT CONDUCTORS

A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway, complying with UL 83.

B. Class 2 Control Circuits: Stranded copper, Type THHN-THWN, in raceway power-limited cable, concealed in building finishes, complying with UL 83.

C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or Type TF, complying with UL 83.

2.5 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

B. Comply with requirements in Section 260553 "Identification for Electrical Systems."

PART 3 - EXECUTION

3.1 INSTALLATION OF PATHWAYS

A. Comply with TIA/EIA-569-A for pull-box sizing and length of conduit and number of bends between pull points.

B. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for installation of conduits and wireways.

C. Install manufactured conduit sweeps and long-radius elbows if possible.
Section 230923 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES (continued)

3.2 INSTALLATION OF CONDUCTORS AND CABLES

A. Comply with NECA 1.

B. General Requirements for Cabling:
 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 4. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 5. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 6. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 7. Cold-Weather Installation: Bring cable to room temperature before dereeeling. Heat lamps shall not be used for heating.
 8. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

C. Installation of Control-Circuit Conductors:
 1. Install wiring in raceways. Comply with requirements specified in Section 260533 "Raceways and Boxes for Electrical Systems."

3.3 REMOVAL OF CONDUCTORS AND CABLES

A. Remove abandoned conductors and cables.

3.4 CONTROL-CIRCUIT CONDUCTORS

A. Minimum Conductor Sizes:
 1. Class 1 remote-control and signal circuits, No 14 AWG.
 2. Class 2 low-energy, remote-control, and signal circuits, No. 16 AWG.
 3. Class 3 low-energy, remote-control, alarm, and signal circuits, No 12 AWG.

3.5 GROUNDING

A. For data communication wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

B. For low-voltage wiring and cabling, comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."
Section 230923 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES (continued)

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.

C. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.

D. End-to-end cabling will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

END OF SECTION 230923
Section 230928 - PATHWAYS FOR CONTROL-VOLTAGE CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Metal conduits, tubing, and fittings.
2. Metal wireways and auxiliary gutters.

1.3 DEFINITIONS

A. GRC: Galvanized rigid steel conduit.
B. IMC: Intermediate metal conduit.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS

A. General Requirements for Metal Conduits and Fittings:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with TIA-569-B.

B. GRC: Comply with ANSI C80.1 and UL 6.
C. IMC: Comply with ANSI C80.6 and UL 1242.
D. EMT: Comply with ANSI C80.3 and UL 797.
E. FMC: Comply with UL 1; zinc-coated steel.
F. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
G. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Fittings for EMT:
 a. Material: Steel or die cast.
Section 230928 - PATHWAYS FOR CONTROL-VOLTAGE CABLES (continued)

b. Type: Setscrew or compression.

H. Joint Compound for IMC or GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 OPTICAL-FIBER-CABLE PATHWAYS AND FITTINGS

A. Description: Comply with UL 2024; flexible-type pathway, approved for plenum riser or general-use installation unless otherwise indicated.

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with TIA-569-B.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.

1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with TIA-569-B.

B. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

C. Wireway Covers: Screw-cover type unless otherwise indicated.

D. Finish: Manufacturer's standard enamel finish.

2.4 BOXES, ENClosures, AND CABINETS

A. General Requirements for Boxes, Enclosures, and Cabinets:

1. Comply with TIA-569-B.
2. Boxes, enclosures and cabinets installed in wet locations shall be listed for use in wet locations.

B. Sheet-Metal Device Boxes: Comply with NEMA OS 1 and UL 514A.

C. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

D. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

E. Device Box Dimensions: 4 inches by 2-1/8 inches by 2-1/8 inches deep (100 mm by 60 mm by 60 mm deep).
Section 230928 - PATHWAYS FOR CONTROL-VOLTAGE CABLES (continued)

F. Nonmetallic Device Boxes: Comply with NEMA OS 2 and UL 514C.

G. Cabinets:
 1. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 2. Hinged door in front cover with flush latch and concealed hinge.
 3. Key latch to match panelboards.
 4. Metal barriers to separate wiring of different systems and voltage.
 5. Accessory feet where required for freestanding equipment.

PART 3 - EXECUTION

3.1 PATHWAY APPLICATION

A. Outdoors: Apply pathway products as specified below unless otherwise indicated:
 1. Exposed Conduit: GRC or IMC.
 2. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 3. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

B. Indoors: Apply pathway products as specified below unless otherwise indicated:
 1. Exposed, Not Subject to Physical Damage: EMT.
 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric-Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 4. Pathways for Optical-Fiber or Communications Cable in Spaces Used for Environmental Air: EMT.
 5. Pathways for Optical-Fiber or Communications-Cable Risers in Vertical Shafts: EMT.
 6. Pathways for Concealed General Purpose Distribution of Optical-Fiber or Communications Cable: EMT.

C. Minimum Pathway Size: 3/4-inch (21-mm)trade size. Minimum size for optical-fiber cables is 1 inch (27 mm).
 1. Pathway Fittings: Compatible with pathways and suitable for use and location.
 2. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 3. EMT: Use setscrew or compression, steel fittings. Comply with NEMA FB 2.10.
 4. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
3.2 INSTALLATION

A. Comply with NECA 1, NECA 101, and TIA-569-B for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum pathways. Comply with NFPA 70 limitations for types of pathways allowed in specific occupancies and number of floors.

B. Keep pathways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal pathway runs above water and steam piping.

C. Complete pathway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for communications wiring conduits for which only two 90-degree bends are allowed. Support within 12 inches (300 mm) of changes in direction.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches (300 mm) of enclosures to which attached.

I. Thruhed Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of pathway and fittings before making up joints. Follow compound manufacturer's written instructions.

J. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install insulated bushings on conduits terminated with locknuts.

K. Install pathways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

L. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to conduit assembly to assure a continuous ground path.

M. Cut conduit perpendicular to the length. For conduits of 2-inch (53-mm) trade size and larger, use roll cutter or a guide to ensure cut is straight and perpendicular to the length.

N. Install pull wires in empty pathways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Cap underground pathways designated as spare above grade alongside pathways in use.

O. Pathways for Optical-Fiber and Communications Cable: Install pathways as follows:

1. 3/4-Inch (21-mm) Trade Size and Smaller: Install pathways in maximum lengths of 50 feet (15 m).
2. 1-Inch (27-mm) Trade Size and Larger: Install pathways in maximum lengths of 75 feet (23 m).

3. Install with a maximum of two 90-degree bends or equivalent for each length of pathway unless Drawings show stricter requirements. Separate lengths with pull or junction boxes or terminations at distribution frames or cabinets where necessary to comply with these requirements.

P. Install pathway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed pathways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install pathway sealing fittings according to NFPA 70.

Q. Install devices to seal pathway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all pathways at the following points:

1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
2. Where otherwise required by NFPA 70.

R. Flexible Conduit Connections: Comply with NEMA RV 3. Use maximum of 72 inches (1830 mm) of flexible conduit for equipment subject to vibration, noise transmission, or movement; and for transformers and motors.

1. Use LFMC in damp or wet locations subject to severe physical damage.

S. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

T. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surface to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

U. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

3.3 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

END OF SECTION 230928
Section 231123 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Pipes, tubes, and fittings.
2. Piping specialties.
3. Piping joining materials.
4. Valves.
5. Concrete bases.

1.3 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.

C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS

A. Minimum Operating-Pressure Ratings:

1. Piping and Valves: 100 psig (690 kPa) minimum unless otherwise indicated.
2. Service Regulators: 100 psig (690 kPa) minimum unless otherwise indicated.
3. Minimum Operating Pressure of Service Meter: 5 psig (34.5 kPa).

B. Natural-Gas System Pressure within Buildings: 0.5 psig (3.45 kPa) or less.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of the following:

1. Piping specialties.
2. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
3. Dielectric fittings.

1.6 INFORMATIONAL SUBMITTALS
A. Welding certificates.
B. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For motorized gas valves to include in emergency, operation, and maintenance manuals.

1.8 QUALITY ASSURANCE
A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."
B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.9 DELIVERY, STORAGE, AND HANDLING
A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.
B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.
D. Protect stored PE pipes and valves from direct sunlight.

1.10 PROJECT CONDITIONS
A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.
B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only
Section 231123 - FACILITY NATURAL-GAS PIPING (continued)

after arranging to provide purging and startup of natural-gas supply according to requirements indicated:

1. Notify Owner no fewer than seven days in advance of proposed interruption of natural-gas service.
2. Do not proceed with interruption of natural-gas service without Owner's written permission.

1.11 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces.

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.

4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 b. End Connections: Threaded or butt welding to match pipe.
 c. Lapped Face: Not permitted underground.
 e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.

5. Protective Coating for Underground Piping: Factory-applied, three-layer coating of epoxy, adhesive, and PE.
 a. Joint Cover Kits: Epoxy paint, adhesive, and heat-shrink PE sleeves.

2.2 PIPING SPECIALTIES

A. Appliance Flexible Connectors:

Section 231123 - FACILITY NATURAL-GAS PIPING (continued)

4. Corrugated stainless-steel tubing with polymer coating.
5. Operating-Pressure Rating: 0.5 psig (3.45 kPa).
8. Maximum Length: 72 inches (1830 mm.)

B. Y-Pattern Strainers:
1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.
3. Strainer Screen: [40] [60]-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
4. CWP Rating: 125 psig (862 kPa).

C. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.

2.3 JOINING MATERIALS
A. Joint Compound and Tape: Suitable for natural gas.

2.4 MANUAL GAS SHUTOFF VALVES
A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
B. General Requirements for Metallic Valves, NPS 2 (DN 50) and Smaller: Comply with ASME B16.33.
 1. CWP Rating: 125 psig (862 kPa).
 4. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch (25 mm) and smaller.
 5. Service Mark: Valves 1-1/4 inches (32 mm) to NPS 2 (DN 50) shall have initials "WOG" permanently marked on valve body.

C. General Requirements for Metallic Valves, NPS 2-1/2 (DN 65) and Larger: Comply with ASME B16.38.
 1. CWP Rating: 125 psig (862 kPa).
Section 231123 - FACILITY NATURAL-GAS PIPING (continued)

2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
4. Service Mark: Initials "WOG" shall be permanently marked on valve body.

D. Two-Piece, Full-Port, Bronze Ball Valves with Stainless Steel Trim: MSS SP-110.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. BrassCraft Manufacturing Company; a Masco company.
 c. Lyall, R. W. & Company, Inc.
 e. Perfection Corporation; a subsidiary of American Meter Company.

4. Stem: Stainless steel; blowout proof.
5. Seats: Reinforced TFE; blowout proof.
6. Packing: Threaded-body packnut design with adjustable-stem packing.
8. CWP Rating: 600 psig (4140 kPa).
9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

E. Bronze Plug Valves: MSS SP-78.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Lee Brass Company.

5. Operator: Square head or lug type with tamperproof feature where indicated.
6. Pressure Class: 125 psig (862 kPa).
7. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

F. Cast-Iron, Lubricated Plug Valves: MSS SP-78.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
Section 231123 - FACILITY NATURAL-GAS PIPING (continued)

a. Flowserve.
b. Homestead Valve; a division of Olson Technologies, Inc.
d. Milliken Valve Company.
e. Mueller Co.; Gas Products Div.

2. Body: Cast iron, complying with ASTM A 126, Class B.
3. Plug: Bronze or nickel-plated cast iron.
4. Seat: Coated with thermoplastic.
5. Stem Seal: Compatible with natural gas.
7. Operator: Square head or lug type with tamperproof feature where indicated.
8. Pressure Class: 125 psig (862 kPa).
9. Listing: Valves NPS 1 (DN 25) and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

2.5 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches (150 mm) wide and 4 mils (0.1 mm) thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches (750 mm) deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
B. Inspect natural-gas piping according to NFPA 54 to determine that natural-gas utilization devices are turned off in piping section affected.
C. Comply with NFPA 54 requirements for prevention of accidental ignition.
3.3 OUTDOOR PIPING INSTALLATION

A. Comply with NFPA 54 for installation and purging of natural-gas piping.

B. Steel Piping with Protective Coating:
 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 2. Replace pipe having damaged PE coating with new pipe.

C. Install fittings for changes in direction and branch connections.

3.4 INDOOR PIPING INSTALLATION

A. Comply with NFPA 54 for installation and purging of natural-gas piping.

B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.

D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

G. Locate valves for easy access.

H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.

I. Install piping free of sags and bends.

J. Install fittings for changes in direction and branch connections.

K. Verify final equipment locations for roughing-in.

L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.

M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches (75 mm)
Section 231123 - FACILITY NATURAL-GAS PIPING (continued)

long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.

N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.

O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.

P. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.

1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.

2. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.

 a. Exception: Tubing passing through partitions or walls does not require striker barriers.

3. Prohibited Locations:

 a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.

 b. Do not install natural-gas piping in solid walls or partitions.

Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.

R. Connect branch piping from top or side of horizontal piping.

S. Install unions in pipes NPS 2 (DN 50) and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.

T. Do not use natural-gas piping as grounding electrode.

U. Install strainer on inlet of each automatic or electrically operated valve.

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."
Section 231123 - FACILITY NATURAL-GAS PIPING (continued)

3.5 SERVICE-METER ASSEMBLY INSTALLATION

A. Install service-meter assemblies aboveground, on concrete bases.

B. Install metal shutoff valves upstream from service regulators. Shutoff valves are not required at second regulators if two regulators are installed in series.

C. Install strainer on inlet of service-pressure regulator and meter set.

D. Install service regulators mounted outside with vent outlet horizontal or facing down. Install screen in vent outlet if not integral with service regulator.

E. Install metal shutoff valves upstream from service meters. Install dielectric fittings downstream from service meters.

F. Install service meters downstream from pressure regulators.

G. Install metal bollards to protect meter assemblies.

3.6 VALVE INSTALLATION

A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.

B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.7 PIPING JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:
 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 2. Cut threads full and clean using sharp dies.
 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:
 2. Bevel plain ends of steel pipe.
3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

3.8 HANGER AND SUPPORT INSTALLATION

A. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 1 (DN 25) and Smaller: Maximum span, 96 inches (2438 mm); minimum rod size, 3/8 inch (10 mm).
2. NPS 1-1/4 (DN 32): Maximum span, 108 inches (2743 mm); minimum rod size, 3/8 inch (10 mm).
3. NPS 1-1/2 and NPS 2 (DN 40 and DN 50): Maximum span, 108 inches (2743 mm); minimum rod size, 3/8 inch (10 mm).
4. NPS 2-1/2 to NPS 3-1/2 (DN 65 to DN 90): Maximum span, 10 feet (3 m); minimum rod size, 1/2 inch (13 mm).
5. NPS 4 (DN 100) and Larger: Maximum span, 10 feet (3 m); minimum rod size, 5/8 inch (15.8 mm).

3.9 CONNECTIONS

A. Connect to utility's gas main according to utility's procedures and requirements.

B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.

C. Install piping adjacent to appliances to allow service and maintenance of appliances.

D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches (1800 mm) of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.

E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.10 LABELING AND IDENTIFYING

A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.

B. Install detectable warning tape directly above gas piping, 12 inches (300 mm) below finished grade, except 6 inches (150 mm) below subgrade under pavements and slabs.
Section 231123 - FACILITY NATURAL-GAS PIPING (continued)

3.11 PAINTING

A. Comply with requirements in Section 099113.1 "Exterior Painting for Mechanical and Electrical Systems" and Section 099123.1 "Interior Painting for Mechanical and Electrical Systems" for painting interior and exterior natural-gas piping.

B. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.12 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base.

1. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit.
2. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.
5. Use 3000-psig (20.7-MPa), 28-day, compressive-strength concrete and reinforcement as specified in Section 033053.1 "Miscellaneous Cast-in-Place Concrete for Mechanical and Electrical Systems."

3.13 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

1. Test, inspect, and purge natural gas according to NFPA 54 and authorities having jurisdiction.

C. Natural-gas piping will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.14 OUTDOOR PIPING SCHEDULE

A. Aboveground natural-gas piping shall be one of the following:

1. Steel pipe with malleable-iron fittings and threaded joints.
2. Steel pipe with wrought-steel fittings and welded joints.

B. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.
Section 231123 - FACILITY NATURAL-GAS PIPING (continued)

3.15 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG (3.45 kPa)

A. Aboveground, branch piping NPS 1 (DN 25) and smaller shall be the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.

B. Aboveground, distribution piping shall be one of the following:
 1. Steel pipe with malleable-iron fittings and threaded joints.
 2. Steel pipe with wrought-steel fittings and welded joints.

C. Containment Conduit: Steel pipe with wrought-steel fittings and welded joints. Coat pipe and fittings with protective coating for steel piping.

D. Containment Conduit Vent Piping: Steel pipe with malleable-iron fittings and threaded or wrought-steel fittings with welded joints. Coat underground pipe and fittings with protective coating for steel piping.

3.16 UNDERGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Connections to Existing Gas Piping: Use valve and fitting assemblies made for tapping utility's gas mains and listed by an NRTL.

3.17 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. Valves for pipe sizes NPS 2 (DN 50) and smaller at service meter shall be the following:
 1. Two-piece, full-port, bronze ball valves with stainless steel trim.

B. Valves for pipe sizes NPS 2-1/2 (DN 65) and larger at service meter shall be the following:
 1. Cast-iron, lubricated plug valve.

C. Distribution piping valves for pipe sizes NPS 2 (DN 50) and smaller shall be the following:
 1. Two-piece, full-port, bronze ball valves with stainless steel trim.

D. Distribution piping valves for pipe sizes NPS 2-1/2 (DN 65) and larger shall be the following:
 1. Cast-iron, lubricated plug valve.

E. Valves in branch piping for single appliance shall be the following:
 1. Two-piece, full-port, bronze ball valves with stainless steel trim.

END OF SECTION 231123
Section 232113 - HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes pipe and fitting materials and joining methods for the following:
 2. Makeup-water piping.
 3. Condensate-drain piping.
 5. Air-vent piping.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of the following:
 1. Plastic pipe and fittings with solvent cement.

B. Field quality-control reports.

C. Water Analysis: Submit a copy of the water analysis to illustrate water quality available at Project site.

1.4 QUALITY ASSURANCE

A. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 1. Energy Recovery-Water Piping: 150 psig (kPa) at 200 deg F (93 deg C).
 2. Makeup-Water Piping: 125 psig (862 kPa) at 150 deg F (66 deg C).
Section 232113 - HYDRONIC PIPING (continued)

5. Air-Vent Piping: 200 deg F (93 deg C).

2.2 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tubing: ASTM B 88, Type L (ASTM B 88M, Type B).

B. Annealed-Temper Copper Tubing: ASTM B 88, Type K (ASTM B 88M, Type A).

C. Wrought-Copper Unions: ASME B16.22.

2.3 STEEL PIPE AND FITTINGS

A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; welded and seamless, Grade B, and wall thickness as indicated in "Piping Applications" Article.

C. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in "Piping Applications" Article.

D. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in "Piping Applications" Article.

E. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe.

F. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:

2. End Connections: Butt welding.
3. Facings: Raised face.

G. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.

2.4 JOINING MATERIALS

A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.

1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness unless otherwise indicated.
 a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
Section 232113 - HYDRONIC PIPING (continued)

B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.

C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

F. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.5 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

1. Description:
 b. Pressure Rating: 125 psig (860 kPa) minimum at 180 deg F (82 deg C).
 c. End Connections: Solder-joint copper alloy and threaded ferrous.

C. Dielectric-Flange Insulating Kits:

1. Description:
 a. Nonconducting materials for field assembly of companion flanges.
 b. Pressure Rating: 150 psig (1035 kPa).
 c. Gasket: Neoprene or phenolic.
 d. Bolt Sleeves: Phenolic or polyethylene.
 e. Washers: Phenolic with steel backing washers.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

A. Energy Recovery-water piping, aboveground, NPS 2 (DN 50) and smaller, shall be any of the following:

1. Type L (Type B), drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
2. Schedule 40 steel pipe; Class 150, malleable-iron fittings; cast-iron flanges and flange fittings; and threaded joints.
Section 232113 - HYDRONIC PIPING (continued)

B. Energy Recovery-water piping, aboveground, NPS 2-1/2 (DN 65) and larger, shall be the following:
 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.

C. Makeup-water piping installed aboveground shall be the following:
 1. Type L (Type B), drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

D. Condensate-Drain Piping: Type L (Type B), drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

E. Blowdown-Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.

F. Air-Vent Piping:
 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer's written instructions.
 2. Outlet: Type L (Type B), drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

G. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer's written instructions.

3.2 PIPING INSTALLATIONS

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

E. Install piping to permit valve servicing.

F. Install piping at indicated slopes.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.
Section 232113 - HYDRONIC PIPING (continued)

I. Install piping to allow application of insulation.

J. Select system components with pressure rating equal to or greater than system operating pressure.

K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

L. Install drains, consisting of a tee fitting, NPS 3/4 (DN 20) ball valve, and short NPS 3/4 (DN 20) threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.

N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.

O. Install branch connections to mains using tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe.

Q. Install unions in piping, NPS 2 (DN 50) and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

R. Install flanges in piping, NPS 2-1/2 (DN 65) and larger, at final connections of equipment and elsewhere as indicated.

S. Install shutoff valve immediately upstream of each dielectric fitting.

T. Comply with requirements in Section 230516 "Expansion Fittings and Loops for HVAC Piping" for installation of expansion loops, expansion joints, anchors, and pipe alignment guides.

U. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for identifying piping.

V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."
Section 232113 - HYDRONIC PIPING (continued)

3.3 DIELECTRIC FITTING INSTALLATION

A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.

B. Dielectric Fittings for NPS 2 (DN 50) and Smaller: Use dielectric unions.

C. Dielectric Fittings for NPS 2-1/2 to NPS 4 (DN 65 to DN 100): Use dielectric flange kits.

D. Dielectric Fittings for NPS 5 (DN 125) and Larger: Use dielectric flange kits.

3.4 HANGERS AND SUPPORTS

A. Comply with requirements in Section 230529 "Hangers and Supports for HVAC Piping and Equipment" for hanger, support, and anchor devices. Comply with the following requirements for maximum spacing of supports.

B. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4 (DN 20): Maximum span, 7 feet (2.1 m).
2. NPS 1 (DN 25): Maximum span, 7 feet (2.1 m).
3. NPS 1-1/2 (DN 40): Maximum span, 9 feet (2.7 m).
4. NPS 2 (DN 50): Maximum span, 10 feet (3 m).
5. NPS 2-1/2 (DN 65): Maximum span, 11 feet (3.4 m).
6. NPS 3 (DN 80) and Larger: Maximum span, 12 feet (3.7 m).

C. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:

1. NPS 3/4 (DN 20): Maximum span, 5 feet (1.5 m); minimum rod size, 1/4 inch (6.4 mm).
2. NPS 1 (DN 25): Maximum span, 6 feet (1.8 m); minimum rod size, 1/4 inch (6.4 mm).
3. NPS 1-1/4 ((DN 32):) Maximum span, 7 feet (2.1 m); minimum rod size, 3/8 inch (10 mm).
4. NPS 1-1/2 (DN 40): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
5. NPS 2 (DN 50): Maximum span, 8 feet (2.4 m); minimum rod size, 3/8 inch (10 mm).
6. NPS 2-1/2 (DN 65): Maximum span, 9 feet (2.7 m); minimum rod size, 3/8 inch (10 mm).
7. NPS 3 (DN 80) and Larger: Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (10 mm).

D. Support vertical runs at roof, at each floor, and at 10-foot (3-m) intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
Section 232113 - HYDRONIC PIPING (continued)

C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.

D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

E. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.

F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

G. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 2. PVC Nonpressure Piping: Join according to ASTM D 2855.

3.6 CHEMICAL TREATMENT

A. Perform an analysis of makeup water to determine type and quantities of chemical treatment needed to keep system free of scale, corrosion, and fouling.

B. Install bypass chemical feeders in each hydronic system where indicated.
 1. Install in upright position with top of funnel not more than 48 inches (1200 mm) above the floor.
 2. Install feeder in minimum NPS 3/4 (DN 20) bypass line, from main with full-size, full-port, ball valve in the main between bypass connections.
 3. Install NPS 3/4 (DN 20) pipe from chemical feeder drain to nearest equipment drain and include a full-size, full-port, ball valve.

C. Fill system with fresh water and add liquid alkaline compound with emulsifying agents and detergents to remove grease and petroleum products from piping. Circulate solution for a minimum of 24 hours, drain, clean strainer screens, and refill with fresh water.

D. Add initial chemical treatment and maintain water quality in ranges noted above for the first year of operation.

E. Fill systems that have antifreeze or glycol solutions with the following concentrations:
Section 232113 - HYDRONIC PIPING (continued)

3.7 FIELD QUALITY CONTROL.

A. Prepare hydronic piping according to ASME B31.9 and as follows:

1. Leave joints, including welds, uninsulated and exposed for examination during test.
2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.

B. Perform the following tests on hydronic piping:

1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
3. Isolate expansion tanks and determine that hydronic system is full of water.
4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times the "SE" value in Appendix A in ASME B31.9, "Building Services Piping."
5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
6. Prepare written report of testing.

C. Perform the following before operating the system:

1. Open manual valves fully.
2. Inspect pumps for proper rotation.
3. Set makeup pressure-reducing valves for required system pressure.
4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
5. Set temperature controls so all coils are calling for full flow.
6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values.
7. Verify lubrication of motors and bearings.

END OF SECTION 232113
Section 232116 - HYDRONIC PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section includes special-duty valves and specialties for the following:
 1. Energy Recovery-water piping.
 2. Makeup-water piping.
 3. Condensate-drain piping.
 5. Air-vent piping.

1.3 ACTION SUBMITTALS
 A. Product Data: For each type of the following:
 1. Valves: Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 2. Air-control devices.
 3. Hydronic specialties.

1.4 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For air-control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS
 A. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

1.6 QUALITY ASSURANCE
 A. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 1. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
Section 232116 - HYDRONIC PIPING SPECIALTIES (continued)

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 1. Energy Recovery-Water Piping: 150 psig at 200 deg F (93 deg C)
 2. Makeup-Water Piping: 125 psig (862 kPa) at 150 deg F (66 deg C).
 5. Air-Vent Piping: 200 deg F (93 deg C).
 6. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 VALVES

A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Section 230523.11 "Globe Valves for HVAC Piping," Section 230523.12 "Ball Valves for HVAC Piping," Section 230523.13 "Butterfly Valves for HVAC Piping," Section 230523.14 "Check Valves for HVAC Piping," and Section 230523.15 "Gate Valves for HVAC Piping."

B. Bronze, Calibrated-Orifice, Balancing Valves:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide TACO Accu-Flo or a comparable product by one of the following:
 a. Flow Design Inc.
 b. Griswold Controls.
 c. NICO INC.; 1710.
 2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
 3. Ball: Brass or stainless steel.
 4. Ports: Dual pressure ports for differential pressure gauge.
 5. Plug: Resin.
 6. Seat: PTFE.
 7. End Connections: Threaded or socket.
 9. Handle Style: Lever, with memory stop to retain set position.

C. Combination Union / Isolation Ball Valve:
 1. Body: Forged or cast brass.
 2. Connections: Threaded with union inlet.
 3. Combination Assemblies: Include bronze ball valve and union.
 4. Union: Provide union with four ¼", body tappings with brass end connections. Union seal shall be EPDM O-rings. Provide an automatic air vent in the top tapping and a pressure/temperature test plug.
Section 232116 - HYDRONIC PIPING SPECIALTIES (continued)

5. Valve: Bronze ball valve with stainless-steel trim.
8. Maximum Operating Temperature: 250 deg F.

D. Isolation Union:

1. Body: Forged or cast brass.
2. Connections: Threaded.
3. Union: Provide union with four ¼", body tappings with brass end connections. Union seal shall be EPDM O-rings. Provide a pressure/temperature test plug.
6. Maximum Operating Temperature: 250 deg F.

2.3 AIR-CONTROL DEVICES

A. Manual Air Vents:

1. Body: Bronze.
2. Internal Parts: Nonferrous.
3. Operator: Screwdriver or thumbscrew.
4. Inlet Connection: NPS 1/2 (DN 15).
5. Discharge Connection: NPS 1/8 (DN 6).
6. CWP Rating: 150 psig (1035 kPa).

B. Automatic Air Vents:

1. Body: Bronze or cast iron.
2. Internal Parts: Nonferrous.
4. Inlet Connection: NPS 1/2 (DN 15).
5. Discharge Connection: NPS 1/4 (DN 8).
6. CWP Rating: 150 psig (1035 kPa).

C. Bladder-Type Expansion Tanks:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Amtrol, Inc.
 b. Bell & Gossett Domestic Pump; a division of ITT Industries.
 c. Taco.
2. Tank: Welded steel, rated for 125-psig (860-kPa) working pressure and 375 deg F (191 deg C) maximum operating temperature. Factory test after taps are fabricated and supports installed and are labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
Section 232116 - HYDRONIC PIPING SPECIALTIES (continued)

3. Bladder: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.

D. Air and Dirt Separators:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Spirotherm
 b. Taco.

2. Tank: Welded steel; ASME constructed and labeled for 125-psig (860-kPa) minimum working pressure and 375 deg F (191 deg C) maximum operating temperature.
3. Air/Dirt Separator Medium: High surface pall rings, constructed to provide separation of air to 20 microns and dirt to 100 microns within 100 passes.
4. Inlet and Outlet Connections: Threaded for NPS 2 (DN 50) and smaller; flanged connections for NPS 2-1/2 (DN 65) and larger.
 2. Flushing: Provide flushing port with ball valve on side of separator.
 3. Size: Match system flow capacity.

E. Air Purgers:

1. Body: Cast iron with internal baffles that slow the water velocity to separate the air from solution and divert it to the vent for quick removal.

2.4 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:

1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger.

B. Reduced-Pressure-Principle Backflow Preventers:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Watts; LF909 or comparable product by one of the following:
 a. Ames Fire & Waterworks; a division of Watts Water Technologies, Inc.
 b. FEBCO; a division of Watts Water Technologies, Inc.
 c. Zurn Industries, LLC; Plumbing Products Group; Wilkins Water Control Products.

3. Operation: Continuous-pressure applications.
Section 232116 - HYDRONIC PIPING SPECIALTIES (continued)

4. Pressure Loss: 12 psig (83 kPa) maximum, through middle third of flow range.
5. Body: Bronze.
7. Configuration: Designed for horizontal, straight-through flow.
8. Accessories:
 a. Valves NPS 2 (DN 50) and Smaller: Ball type with threaded ends on inlet and outlet.

C. Expansion Fittings: Comply with requirements in Section 230516 "Expansion Fittings and Loops for HVAC Piping."

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

A. Install shutoff-duty valves at each branch connection to supply mains and at supply connection to each piece of equipment.

B. Install calibrated-orifice, balancing valves at each branch connection to return main.

C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal.

D. Install check valves at each pump discharge and elsewhere as required to control flow direction.

E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.

F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.

 1. Install water regulators with inlet and outlet shutoff valves and bypass with memory-stop balancing valve. Install pressure gages on inlet and outlet.

3.2 HYDRONIC SPECIALTIES INSTALLATION

A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.

B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Install manual vents at heat-transfer coils and elsewhere as required for air venting.

C. Install piping from boiler air outlet, air separator, or air purger to expansion tank with a 2 percent upward slope toward tank.

D. Install air and dirt separator in pump suction. Install blowdown piping with full-port ball valve; extend full size to nearest floor drain.
Section 232116 - HYDRONIC PIPING SPECIALTIES (continued)

E. Install expansion tanks above the air separator. Install tank fitting in tank bottom and charge
tank. Use manual vent for initial fill to establish proper water level in tank.

1. Install tank fittings that are shipped loose.
2. Support tank from floor or structure above with sufficient strength to carry weight of
tank, piping connections, fittings, plus tank full of water. Do not overload building
components and structural members.

F. Install expansion tanks on the floor. Vent and purge air from hydronic system, and ensure that
tank is properly charged with air to suit system Project requirements.

G. Install backflow preventers in each makeup-water supply to mechanical equipment and systems.
Comply with authorities having jurisdiction.

1. Locate backflow preventers in same room as connected equipment or system.
2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap
fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe
diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or
under backflow preventer. Simple air breaks are unacceptable for this application.
3. Do not install bypass piping around backflow preventers.

END OF SECTION 232116
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Wet-rotor pumps.

1.3 DEFINITIONS
 A. Buna-N: Nitrile rubber.
 B. EPT: Ethylene propylene terpolymer.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of pump. Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.
 B. Shop Drawings: For each pump.
 1. Show pump layout and connections.
 2. Include setting drawings with templates for installing foundation and anchor bolts and other anchorages.
 3. Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS
 A. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
 A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Mechanical Seals: One mechanical seal(s) for each pump.
Section 232123 - HYDRONIC PUMPS (continued)

PART 2 - PRODUCTS

2.1 WET-ROTOR PUMPS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Armstrong Pumps Inc.
2. ITT Corporation; Bell & Gossett.
3. TACO Incorporated.

B. Description: Factory-assembled and -tested, wet-rotor pump.

C. Pump Construction:

1. Body: 100 percent lead-free bronze or Cast iron.
2. Impeller: Polypropylene.

D. Motor:

1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PUMP INSTALLATION

A. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.

B. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.
Section 232123 - HYDRONIC PUMPS (continued)

C. Equipment Mounting: Install in-line pumps with continuous-thread hanger rods and spring hangers of size required to support weight of in-line pumps.

1. Comply with requirements for seismic-restraint devices specified in Section 230548 "Vibration and Seismic Controls for HVAC Piping and Equipment."

2. Comply with requirements for hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

3.3 ALIGNMENT

A. Comply with requirements in Hydronics Institute standards for alignment of pump and motor shaft. Add shims to the motor feet and bolt motor to base frame. Do not use grout between motor feet and base frame.

B. Comply with pump and coupling manufacturers’ written instructions.

3.4 CONNECTIONS

A. Where installing piping adjacent to pump, allow space for service and maintenance.

B. Connect piping to pumps. Install valves that are same size as piping connected to pumps.

C. Install check, shutoff, and calibrated balancing valve on discharge side of pumps.

D. Install flexible connectors on suction and discharge sides of base-mounted pumps between pump casing and valves.

E. Install pressure gages on pump suction and discharge or at integral pressure-gage tapping, or install single gage with multiple-input selector valve.

F. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

G. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.5 STARTUP SERVICE

A. Perform startup service.

1. Complete installation and startup checks according to manufacturer’s written instructions.

2. Check piping connections for tightness.

3. Clean strainers on suction piping.

4. Perform the following startup checks for each pump before starting:

 a. Verify bearing lubrication.

 b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
Section 232123 - HYDRONIC PUMPS (continued)

c. Verify that pump is rotating in the correct direction.

5. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
7. Open discharge valve slowly.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain hydronic pumps.

END OF SECTION 232123
Section 232300 - REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS

A. Line Test Pressure for Refrigerant R-410A:

1.4 ACTION SUBMITTALS

A. Shop Drawings: Show layout of refrigerant piping and specialties, including pipe, tube, and fitting sizes, flow capacities, valve arrangements and locations, slopes of horizontal runs, oil traps, double risers, wall and floor penetrations, and equipment connection details. Show interface and spatial relationships between piping and equipment.

1. Shop Drawing Scale: 1/8 inch equals 1 foot (1:100).
2. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control test reports.

1.6 QUALITY ASSURANCE

B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."
Section 232300 - REFRIGERANT PIPING (continued)

1.7 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

PART 2 - PRODUCTS

2.1 COPPER TUBE AND FITTINGS

A. Copper Tube: ASTM B 88, Type K or L (ASTM B 88M, Type A or B).

B. Wrought-Copper Fittings: ASME B16.22.

C. Wrought-Copper Unions: ASME B16.22.

D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.

2.2 VALVES AND SPECIALTIES

A. Service Valves:

1. Body: Forged brass with brass cap including key end to remove core.
2. Core: Removable ball-type check valve with stainless-steel spring.
4. End Connections: Copper spring.

B. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.

1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
4. End Connections: Threaded.

C. Moisture/Liquid Indicators:

2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
3. Indicator: Color coded to show moisture content in ppm.
5. End Connections: Socket or flare.
Section 232300 - REFRIGERANT PIPING (continued)

2.3 REFRIGERANTS

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

A. Suction Lines NPS 4 (DN 100) and Smaller for Conventional Air-Conditioning Applications: Copper, Type L (B), drawn-temper tubing and wrought-copper fittings with soldered joints.

B. Hot-Gas and Liquid Lines, and Suction Lines for Heat-Pump Applications: Copper, Type L (B), drawn-temper tubing and wrought-copper fittings with Alloy HB soldered joints.

C. Safety-Relief-Valve Discharge Piping: Copper, Type L (B), drawn-temper tubing and wrought-copper fittings with Alloy HB soldered joints.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Shop Drawings.

B. Install refrigerant piping according to ASHRAE 15.

C. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

F. Install piping adjacent to machines to allow service and maintenance.

G. Install piping free of sags and bends.

H. Install fittings for changes in direction and branch connections.

I. Select system components with pressure rating equal to or greater than system operating pressure.

J. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.

K. Install refrigerant piping in protective conduit where installed belowground.
Section 232300 - REFRIGERANT PIPING (continued)

L. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.

M. Slope refrigerant piping as follows:
 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 2. Install horizontal suction lines with a uniform slope downward to compressor.
 3. Liquid lines may be installed level.

N. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.

O. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.

P. Identify refrigerant piping and valves according to Section 230553 "Identification for HVAC Piping and Equipment."

Q. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."

R. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.3 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Soldered Joints: Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook."

3.4 HANGERS AND SUPPORTS

A. Hanger, support, and anchor products are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Install the following pipe attachments:
 1. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.

C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 1. NPS 1/2 (DN 15): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
Section 232300 - REFRIGERANT PIPING (continued)

2. NPS 5/8 (DN 18): Maximum span, 60 inches (1500 mm); minimum rod size, 1/4 inch (6.4 mm).
3. NPS 1 (DN 25): Maximum span, 72 inches (1800 mm); minimum rod size, 1/4 inch (6.4 mm).
4. NPS 1-1/4 (DN 32): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
5. NPS 1-1/2 (DN 40): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
6. NPS 2 (DN 50): Maximum span, 96 inches (2400 mm); minimum rod size, 3/8 inch (9.5 mm).
7. NPS 2-1/2 (DN 65): Maximum span, 108 inches (2700 mm); minimum rod size, 3/8 inch (9.5 mm).
8. NPS 3 (DN 80): Maximum span, 10 feet (3 m); minimum rod size, 3/8 inch (9.5 mm).
9. NPS 4 (DN 100): Maximum span, 12 feet (3.7 m); minimum rod size, 1/2 inch (13 mm).

D. Support multifloor vertical runs at least at each floor.

3.5 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:

1. Comply with ASME B31.5, Chapter VI.
2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 a. Fill system with nitrogen to the required test pressure.
 b. System shall maintain test pressure at the manifold gage throughout duration of test.
 c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.6 SYSTEM CHARGING

A. Charge system using the following procedures:

1. Install core in filter dryers after leak test but before evacuation.
2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers (67 Pa). If vacuum holds for 12 hours, system is ready for charging.
3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig (14 kPa).
4. Charge system with a new filter-dryer core in charging line.
Section 232300 - REFRIGERANT PIPING (continued)

END OF SECTION 232300
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes the following water treatment for closed-loop hydronic systems:
 2. Chemicals.

1.3 DEFINITIONS

A. TSS: Total suspended solids are solid materials, including organic and inorganic, that are suspended in the water. These solids may include silt, plankton, and industrial wastes.

1.4 ACTION SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, and furnished specialties and accessories for the following products:
 1. Bypass feeders.
 2. Chemical material safety data sheets.

1.5 INFORMATIONAL SUBMITTALS

A. Water Analysis Provider Qualifications: Verification of experience and capability of HVAC water-treatment service provider.

B. Field quality-control reports.

C. Other Informational Submittals:
 1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in "Performance Requirements" Article.
Section 232513 - WATER TREATMENT FOR CLOSED-LOOP HYDRONIC SYSTEMS (continued)

1.6 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC water-treatment service provider capable of analyzing water qualities, installing water-treatment equipment, and applying water treatment as specified in this Section.

1.7 MAINTENANCE SERVICE

A. Scope of Maintenance Service: Provide chemicals and service program to maintain water conditions required above to inhibit corrosion and scale formation for hydronic piping and equipment. Services and chemicals shall be provided for a period of one year from date of Substantial Completion and shall include the following:

1. Initial water analysis and HVAC water-treatment recommendations.
2. Startup assistance for Contractor to flush the systems, clean with detergents, and initially fill systems with required chemical treatment prior to operation.
3. Periodic field service and consultation.
5. Laboratory technical analysis.
6. Analyses and reports of all chemical items concerning safety and compliance with government regulations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Water quality for hydronic systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of hydronic equipment without creating a hazard to operating personnel or the environment.

B. Base HVAC water treatment on quality of water available at Project site, hydronic system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.

C. Closed hydronic systems, including energy recovery water, shall have the following water qualities:

1. pH: Maintain a value within 9.0 to 10.5.
2. "P" Alkalinity: Maintain a value within 100 to 500 ppm.
3. Boron: Maintain a value within 100 to 200 ppm.
4. Chemical Oxygen Demand: Maintain a maximum value of 100 ppm.
5. Soluble Copper: Maintain a maximum value of 0.20 ppm.
6. TSS: Maintain a maximum value of 10 ppm.
9. Microbiological Limits:
 a. Total Aerobic Plate Count: Maintain a maximum value of 1000 organisms/mL.
Section 232513 - WATER TREATMENT FOR CLOSED-LOOP HYDRONIC SYSTEMS (continued)

b. Total Anaerobic Plate Count: Maintain a maximum value of 100 organisms/mL.
c. Nitrate Reducers: Maintain a maximum value of 100 organisms/mL.
d. Sulfate Reducers: Maintain a maximum value of zero organisms/mL.
e. Iron Bacteria: Maintain a maximum value of zero organisms/mL.

2.2 MANUAL CHEMICAL-FEED EQUIPMENT

A. Bypass Feeders: Steel, with corrosion-resistant exterior coating, minimum 3-1/2-inch (89-mm) fill opening in the top, and NPS 3/4 (DN 20) bottom inlet and top side outlet. Quarter turn or threaded fill cap with gasket seal and diaphragm to lock the top on the feeder when exposed to system pressure in the vessel.

2.3 CHEMICALS

A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment and that can attain water quality specified in "Performance Requirements" Article.

PART 3 - EXECUTION

3.1 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.

3.2 INSTALLATION

A. Install chemical application equipment on concrete bases, level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor chemical tanks and floor-mounting accessories to substrate.

B. Install water testing equipment on wall near water chemical application equipment.

C. Bypass Feeders: Install in closed hydronic systems, including energy recovery-water, and equipped with the following:

1. Install bypass feeder in a bypass circuit around circulating pumps unless otherwise indicated on Drawings.
2. Install test-coupon assembly in bypass circuit around circulating pumps unless otherwise indicated on Drawings.
3. Install a full-port ball isolation valves on inlet, outlet, and drain below the feeder inlet.
4. Install a swing check on the inlet after the isolation valve.
Section 232513 - WATER TREATMENT FOR CLOSED-LOOP HYDRONIC SYSTEMS (continued)

3.3 CONNECTIONS

A. Where installing piping adjacent to equipment, allow space for service and maintenance.

B. Make piping connections between HVAC water-treatment equipment and dissimilar-metal piping with dielectric fittings. Comply with requirements in Section 232116 "Hydronic Piping Specialties."

C. Install shutoff valves on HVAC water-treatment equipment inlet and outlet. Metal general-duty valves are specified in Section 230523 "General-Duty Valves for HVAC Piping."

D. Comply with requirements in Section 221119 "Domestic Water Piping Specialties" for backflow preventers required in makeup-water connections to potable-water systems.

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. Inspect field-assembled components and equipment installation, including piping and electrical connections.
2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
3. Do not enclose, cover, or put piping into operation until it is tested and satisfactory test results are achieved.
4. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
5. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
6. Cap and subject piping to static water pressure of 50 psig (345 kPa) above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.
7. Repair leaks and defects with new materials and retest piping until no leaks exist.

B. Equipment will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.

D. Comply with ASTM D 3370 and with the following standards:

Section 232513 - WATER TREATMENT FOR CLOSED-LOOP HYDRONIC SYSTEMS (continued)

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment.

END OF SECTION 232513
This Page Left Intentionally Blank
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes separately enclosed, pre-assembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.

B. Related Sections:

1. Section 262419 "Motor-Control Centers" for VFCs installed in motor-control centers.

1.3 DEFINITIONS

A. BAS: Building automation system.

B. CE: Conformite Europeene (European Compliance).

C. CPT: Control power transformer.

D. EMI: Electromagnetic interference.

E. IGBT: Insulated-gate bipolar transistor.

F. LAN: Local area network.

G. LED: Light-emitting diode.

H. MCP: Motor-circuit protector.

I. NC: Normally closed.

J. NO: Normally open.

K. OCPD: Overcurrent protective device.

L. PCC: Point of common coupling.

M. PID: Control action, proportional plus integral plus derivative.

N. PWM: Pulse-width modulated.

O. RFI: Radio-frequency interference.
Section 232923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS (continued)

P. TDD: Total demand (harmonic current) distortion.

Q. THD(V): Total harmonic voltage demand.

R. VFC: Variable-frequency motor controller.

1.4 ACTION SUBMITTALS

A. Product Data: For each type and rating of VFC indicated. Include features, performance, electrical ratings, operating characteristics, shipping and operating weights, and furnished specialties and accessories.

B. Shop Drawings: For each VFC indicated. Include dimensioned plans, elevations, and sections; and conduit entry locations and sizes, mounting arrangements, and details, including required clearances and service space around equipment.

1. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 a. Each installed unit's type and details.
 b. Factory-installed devices.
 c. Enclosure types and details.
 d. Nameplate legends.
 e. Short-circuit current (withstand) rating of enclosed unit.
 f. Features, characteristics, ratings, and factory settings of each VFC and installed devices.
 g. Specified modifications.

2. Schematic and Connection Wiring Diagrams: For power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout, required working clearances, and required area above and around VFCs. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements. Show support locations, type of support, and weight on each support. Indicate field measurements.

B. Qualification Data: For qualified testing agency.

C. Product Certificates: For each VFC, from manufacturer.

D. Harmonic Analysis Study and Report: Comply with IEEE 399 and NETA Acceptance Testing Specification; identify the effects of nonlinear loads and their associated harmonic contributions on the voltages and currents throughout the electrical system. Analyze possible operating scenarios, including recommendations for VFC input filtering to limit TDD and THD(V) at each VFC to specified levels.

E. Source quality-control reports.
Section 232923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS (continued)

F. Field quality-control reports.

G. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For VFCs to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

1. Manufacturer's written instructions for testing and adjusting thermal-magnetic circuit breaker and MCP trip settings.
2. Manufacturer's written instructions for setting field-adjustable overload relays.
3. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
4. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
3. Indicating Lights: Two of each type and color installed.
4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.8 QUALITY ASSURANCE

A. Testing Agency Qualifications: Member company of NETA or an NRTL.

1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. Comply with NFPA 70.

D. IEEE Compliance: Fabricate and test VFC according to IEEE 344 to withstand seismic forces defined in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
1.9 DELIVERY, STORAGE, AND HANDLING

A. Store in space that is enclosed, air conditioned and free of construction born debris and dust.
B. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside controllers and connect factory-installed space heaters to temporary electrical service.

1.10 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation, capable of driving full load without derating, under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than 14 deg F (minus 10 deg C) and not exceeding 104 deg F (40 deg C).
2. Ambient Storage Temperature: Not less than minus 4 deg F (minus 20 deg C) and not exceeding 140 deg F (60 deg C)
3. Humidity: Less than 95 percent (noncondensing).
4. Altitude: Not exceeding 3300 feet (1005 m).

B. Interruption of Existing Electrical Systems: Do not interrupt electrical systems in facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service according to requirements indicated:

1. Notify Owner no fewer than five days in advance of proposed interruption of electrical systems.
2. Indicate method of providing temporary electrical service.
3. Do not proceed with interruption of electrical systems without Owner's written permission.
4. Comply with NFPA 70E.

C. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, including clearances between VFCs, and adjacent surfaces and other items.

1.11 COORDINATION

A. Coordinate features of motors, load characteristics, installed units, and accessory devices to be compatible with the following:

1. Torque, speed, and horsepower requirements of the load.
2. Ratings and characteristics of supply circuit and required control sequence.
3. Ambient and environmental conditions of installation location.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases.
Section 232923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS (continued)

1.12 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURED UNITS

A. Basis-of-Design Product: Subject to compliance with requirements, provide ABB; ACH 550 or comparable product by one of the following:

1. Danfoss Inc.; Danfoss Drives Div.
2. Siemens Energy & Automation, Inc.
3. Square D; a brand of Schneider Electric.
4. Yaskawa Electric America, Inc; Drives Division.

B. General Requirements for VFCs: Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508C.

C. Application: Variable torque.

D. VFC Description: Variable-frequency power converter (rectifier, dc bus, and IGBT, PWM inverter) factory packaged in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.

1. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
2. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.

E. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.

F. Output Rating: Three-phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.

G. Unit Operating Requirements:

1. Input AC Voltage Tolerance: Plus 10 and minus 15 percent of VFC input voltage rating.
2. Input AC Voltage Unbalance: Not exceeding 5 percent.
3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
4. Minimum Efficiency: 97 percent at 60 Hz, full load.
5. Minimum Displacement Primary-Side Power Factor: 98 percent under any load or speed condition.
6. Minimum Short-Circuit Current (Withstand) Rating: 100 kA.
Section 232923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS (continued)

7. Ambient Temperature Rating: Not less than 14 deg F (minus 10 deg C) and not exceeding 104 deg F (40 deg C).
8. Ambient Storage Temperature Rating: Not less than minus 4 deg F (minus 20 deg C) and not exceeding 140 deg F (60 deg C)
10. Altitude Rating: Not exceeding 3300 feet (1005 m).
12. Overload Capability: 1.1 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
13. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
14. Speed Regulation: Plus or minus 0.1 percent.
15. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
16. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.

H. Inverter Logic: Microprocessor based, 32 bit, isolated from all power circuits.

I. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.

J. Internal Adjustability Capabilities:
 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 3. Acceleration: 0.1 to 6,000 seconds.
 4. Deceleration: 0.1 to 6,000 seconds.
 5. Current Limit: 30 to minimum of 150 percent of maximum rating.

K. Self-Protection and Reliability Features:
 1. Input transient protection by means of surge suppressors to provide three-phase protection against damage from supply voltage surges 10 percent or more above nominal line voltage.
 2. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
 4. Inverter overcurrent trips.
 5. VFC and Motor Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor overload alarm and trip; settings selectable via the keypad; NRTL approved.
 6. Critical frequency rejection, with three selectable, adjustable deadbands.
 7. Instantaneous line-to-line and line-to-ground overcurrent trips.
 10. Short-circuit protection.
 11. Motor overtemperature fault.
Section 232923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS (continued)

L. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.

M. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.

N. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.

O. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.

P. Integral Input Disconnecting Means and OCPD: NEMA AB 1, instantaneous-trip circuit breaker with pad-lockable, door-mounted handle mechanism.

1. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
2. Auxiliary contacts "a" and "b" arranged to activate with circuit-breaker handle.
3. NC alarm contact that operates only when circuit breaker has tripped.

2.2 CONTROLS AND INDICATION

A. Status Lights: Door-mounted LED indicators displaying the following conditions:

1. Power on.
2. Run.
3. Over-voltage.
4. Line fault.
5. Overcurrent.

B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.

1. Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
2. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.

 a. Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.

C. Historical Logging Information and Displays:
Section 232923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS (continued)

1. Real-time clock with current time and date.
2. Running log of total power versus time.
3. Total run time.
4. Fault log, maintaining last four faults with time and date stamp for each.

D. Indicating Devices: Digital display mounted flush in VFC door and connected to display VFC parameters including, but not limited to:

1. Output frequency (Hz).
5. Motor torque (percent).
6. Fault or alarming status (code).
7. PID feedback signal (percent).
8. DC-link voltage (V dc).
9. Set point frequency (Hz).
10. Motor output voltage (V ac).

E. Control Signal Interfaces:

1. Electric Input Signal Interface:
 a. A minimum of two programmable analog inputs: 0- to 10-V dc or 4- to 20-mA dc Operator-selectable "x"- to "y"-mA dc.
 b. A minimum of six multifunction programmable digital inputs.

2. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the BAS or other control systems:
 a. 0- to 10-V dc.
 b. 4- to 20-mA dc.
 c. Potentiometer using up/down digital inputs.

3. Output Signal Interface: A minimum of one programmable analog output signal(s) (0- to 10-V dc or 4- to 20-mA dc operator-selectable "x"- to "y"-mA dc), which can be configured for any of the following:
 a. Output frequency (Hz).
 b. Output current (load).
 c. DC-link voltage (V dc).
 d. Motor torque (percent).
 e. Motor speed (rpm).
 f. Set point frequency (Hz).

4. Remote Indication Interface: A minimum of two programmable dry-circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 a. Motor running.
 b. Set point speed reached.
 c. Fault and warning indication (overtemperature or overcurrent).
Section 232923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS (continued)

d. PID high- or low-speed limits reached.

F. PID Control Interface: Provides closed-loop set point, differential feedback control in response to dual feedback signals. Allows for closed-loop control of fans and pumps for pressure, flow, or temperature regulation.

1. Number of Loops: One.

G. BAS Interface: Factory-installed hardware and software to enable the BAS to monitor, control, and display VFC status and alarms and energy usage. Allows VFC to be used with an external system within a multidrop LAN configuration; settings retained within VFC’s nonvolatile memory.

1. Network Communications Ports: Ethernet and RS-422/485.
2. Embedded BAS Protocols for Network Communications: ASHRAE 135 BACnet, Johnson Metasys N2, Modbus/Memobus, and Siemens System 600 APOGEE; protocols accessible via the communications ports.

2.3 LINE CONDITIONING AND FILTERING

A. Input Line Conditioning: Based on the harmonic analysis study and report, provide input filtering, as required, to limit TDD and THD(V) at the defined PCC per IEEE 519.

B. Input Line Conditioning: 3% DC Bus Reactor.

2.4 BYPASS SYSTEMS

A. Bypass Operation: Safely transfers motor between power converter output and bypass circuit, manually, automatically, or both. Selector switches set modes and indicator lights indicate mode selected. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter.

B. Bypass Mode: Field-selectable automatic or manual, allows local and remote transfer between power converter and bypass contactor and retransfer, either via manual operator interface or automatic control system feedback.

C. Bypass Controller: Three-contactor-style bypass allows motor operation via the power converter or the bypass controller, with input isolating switch and barrier arranged to isolate the power converter input and output and permit safe testing and troubleshooting of the power converter, both energized and de-energized, while motor is operating in bypass mode.

2. Input and Output Isolating Contactors: Non-load-break, NEMA-rated contactors.
3. Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and de-energized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.

D. Bypass Contactor Configuration: Reduced-voltage (autotransformer) type.
Section 232923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS (continued)

1. NORMAL/BYPASS selector switch.
2. HAND/OFF/AUTO selector switch.
3. NORMAL/TEST Selector Switch: Allows testing and adjusting of VFC while the motor is running in the bypass mode.
 a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 b. Power Contacts: Totally enclosed, double break, and silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
5. Control Circuits: 120 -V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate all integral devices and remotely located pilot, indicating, and control devices.
 a. CPT Spare Capacity: 100 VA.
 a. Solid-State Overload Relays:
 1) Switch or dial selectable for motor-running overload protection.
 2) Sensors in each phase.
 3) Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
 4) Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
 5) Analog communication module.
 b. NC isolated overload alarm contact.
 c. External overload reset push button.

2.5 OPTIONAL FEATURES

A. Sleep Function: Senses a minimal deviation of a feedback signal and stops the motor. On an increase in speed-command signal deviation, VFC resumes normal operation.

B. Firefighter's Override (Smoke Purge) Input: On a remote contact closure from smoke-control fan controller, this password-protected input:
 1. Overrides all other local and external inputs (analog/digital, serial communication, and all keypad commands).
 2. Forces VFC to operate motor, without any other run or speed command, at a field-adjustable, preset speed.
 3. Causes display of Override Mode on the VFC display.
 4. Reset VFC to normal operation on removal of override signal automatically.

C. Communication Port: RS-232 port, USB 2.0 port, or equivalent connection capable of connecting a printer and a notebook computer.
2.6 ENCLOSURES

A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.
 1. Dry and Clean Indoor Locations: Type 1.
 2. Outdoor Locations: Type 3R.
 3. Other Wet or Damp Indoor Locations: Type 4.
 4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12.

B. Plenum Rating: UL 1995; NRTL certification label on enclosure, clearly identifying VFC as "Plenum Rated."

2.7 ACCESSORIES

A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.
 a. Push Buttons: Covered types; momentary.
 b. Pilot Lights: LED types; push to test.
 c. Selector Switches: Rotary type.

C. Breather and drain assemblies, to maintain interior pressure and release condensation in NEMA 250, Type 4, Type 4X or Type 12 enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.

D. Space heaters, with NC auxiliary contacts, to mitigate condensation in NEMA 250, Type 3R, Type 4X or Type 12 enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.

E. Cooling Fan and Exhaust System: For NEMA 250, Type 1; UL 508 component recognized: Supply fan, with stainless steel intake and exhaust grills and filters; 120 -V ac; obtained from integral CPT.

F. Sun shields installed on fronts, sides, and tops of enclosures installed outdoors and subject to direct and extended sun exposure.

2.8 SOURCE QUALITY CONTROL

A. Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.
Section 232923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS (continued)

1. Test each VFC while connected to a motor that is comparable to that for which the VFC is rated.
2. Verification of Performance: Rate VFCs according to operation of functions and features specified.

B. VFCs will be considered defective if they do not pass tests and inspections.
C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance.
B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.
C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.
D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 HARMONIC ANALYSIS STUDY

A. Perform a harmonic analysis study to identify the effects of nonlinear loads and their associated harmonic contributions on the voltages and currents throughout the electrical system. Analyze possible operating scenarios, including recommendations for VFC input filtering to limit TDD and THD(V) at each VFC to specified levels.
B. Prepare a harmonic analysis study and report complying with IEEE 399 and NETA Acceptance Testing Specification.

3.3 INSTALLATION

A. Coordinate layout and installation of VFCs with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
B. Wall-Mounting Controllers: Install VFCs on walls with tops at uniform height and with disconnect operating handles not higher than 79 inches (2000 mm) above finished floor unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."
Section 232923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS (continued)

C. Floor-Mounting Controllers: Install VFCs on 4-inch (100-mm) nominal thickness concrete base. Comply with requirements for concrete base specified in Section 033053.1 "Miscellaneous Cast-in-Place Concrete for Mechanical and Electrical Systems."

1. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
2. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
4. Install anchor bolts to elevations required for proper attachment to supported equipment.

D. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

E. Install fuses in control circuits if not factory installed. Comply with requirements in Section 262813 "Fuses."

F. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.

G. Comply with NECA 1.

3.4 IDENTIFICATION

A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Section 230553 "Identification for HVAC Systems."

1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
2. Label each VFC with engraved nameplate.
3. Label each enclosure-mounted control and pilot device.

B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.5 CONTROL WIRING INSTALLATION

A. Install wiring between VFCs and remote devices and facility's central-control system. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."

B. Bundle, train, and support wiring in enclosures.

C. Connect selector switches and other automatic control devices where applicable.

1. Connect selector switches to bypass only those manual- and automatic control devices that have no safety functions when switches are in manual-control position.
2. Connect selector switches with control circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor overload protectors.

3.6 FIELD QUALITY CONTROL

A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Acceptance Testing Preparation:

1. Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
2. Test continuity of each circuit.

E. Tests and Inspections:

1. Inspect VFC, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.
3. Test continuity of each circuit.
4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Engineer before starting the motor(s).
5. Test each motor for proper phase rotation.
6. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
7. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.

F. VFCs will be considered defective if they do not pass tests and inspections.

G. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.7 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.
Section 232923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS (continued)

1. Complete installation and startup checks according to manufacturer's written instructions.

3.8 ADJUSTING

A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.

B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.

C. Adjust the trip settings of MCPs and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to six times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cool-down between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Engineer before increasing settings.

D. Set the taps on reduced-voltage autotransformer controllers.

E. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573 "Overcurrent Protective Device Coordination Study."

F. Set field-adjustable pressure switches.

3.9 PROTECTION

A. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION 232923
Section 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Single-wall rectangular ducts and fittings.
 2. Double-wall rectangular ducts and fittings.
 4. Sheet metal materials.
 5. Sealants and gaskets.
 6. Hangers and supports.

B. Related Sections:
 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
 2. Section 233119 "HVAC Casings" for factory- and field-fabricated casings for mechanical equipment.
 3. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.

B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"

C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of the following products:
 1. Liners and adhesives.
Section 233113 - METAL DUCTS (continued)

2. Sealants and gaskets.

B. Delegated-Design Submittal:

1. Sheet metal thicknesses.
2. Joint and seam construction and sealing.
3. Reinforcement details and spacing.
4. Materials, fabrication, assembly, and spacing of hangers and supports.

1.5 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.6 QUALITY ASSURANCE

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.4.4 - "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable
2.2 DOUBLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. Basis of Design: Subject to compliance with requirements, provide McGill Airflow; Rectangular-k27 or comparable product by one of the following:

1. McGill AirFlow LLC.
2. Sheet Metal Connectors, Inc.

B. Rectangular Ducts: Fabricate ducts with indicated dimensions for the inner duct.

C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

D. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

E. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

F. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."

1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F (0.039 W/m x K) at 75 deg F (24 deg C) mean temperature.
2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
3. Coat insulation with antimicrobial coating.

G. Inner Duct: Minimum 0.028-inch (0.7-mm) perforated galvanized sheet steel having 3/32-inch-(2.4-mm-) diameter perforations, with overall open area of 23 percent.

H. Formed-on Transverse Joints (Flanges): Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Traverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

I. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-
Section 233113 - METAL DUCTS (continued)

support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 SINGLE-WALL ROUND DUCTS AND FITTINGS

A. Basis of Design: Subject to compliance with requirements, provide SEMCO; SL95/SM95 or comparable product by one of the following:

1. Lindab Inc.
2. McGill AirFlow LLC.
3. SEMCO Incorporated.

B. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.

1. Construction: Spiral seam duct manufactured from G-60 galvanized steel meeting ASTM A924 and A653.
2. Take-Offs: Branch connections shall be made with 90° conical and 45° straight taps as shown on the drawings. All branch connections shall be made as a separate fitting. Factory or field installation of taps into spiral duct shall not be allowed.
3. Elbows: 90° and 45° elbows in diameters 3" round through 10" round shall be stamped or pleated elbows. All other elbows shall be of the gored type.
4. Circumferential and Longitudinal Seams: Fitting seams shall be a continuous weld or spot welded and sealed with mastic. All welds shall be painted to prevent corrosion.
5. Transverse Joints: All field joints for round ducts up to and including 36" diameter and oval ducts up to and including 41" major axis shall be made with a 2" slip-fit or slip coupling. Diameters 38" round and larger shall be provided with AccuFlange, or equal, flanged connections. AccuFlange, or equal, flanged connections may also be used in lieu of slip connections on smaller sizes.

2.4 SHEET METAL MATERIALS

A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.

1. Galvanized Coating Designation: G60 (Z180).
2. Finishes for Surfaces Exposed to View: Mill phosphatized.

C. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.

D. Aluminum Sheets: Comply with ASTM B 209 (ASTM B 209M) Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
Section 233113 - METAL DUCTS (continued)

E. Factory- or Shop-Applied Antimicrobial Coating:

1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
2. Antimicrobial compound shall be tested for efficacy by an NRRLT and registered by the EPA for use in HVAC systems.
3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRRLT.
6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.

F. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.

G. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.5 SEALANT AND GASKETS

A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRRLT.

B. Water-Based Joint and Seam Sealant:

1. Application Method: Brush on.
2. Solids Content: Minimum 65 percent.
5. Mold and mildew resistant.
6. VOC: Maximum 75 g/L (less water).
7. Maximum Static-Pressure Class: 10-inch wg (2500 Pa), positive and negative.
8. Service: Indoor or outdoor.
9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.

C. Flanged Joint Sealant: Comply with ASTM C 920.

2. Type: S.
3. Grade: NS.
5. Use: O.
Section 233113 - METAL DUCTS (continued)

6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
7. Sealant shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

E. Round Duct Joint O-Ring Seals:
 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg (0.14 L/s per sq. m at 250 Pa) and shall be rated for 10-inch wg (2500-Pa) static-pressure class, positive or negative.
 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.

2.6 HANGERS AND SUPPORTS

A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.

C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."

D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.

E. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.

F. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

G. Trapeze and Riser Supports:
 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations.
Section 233113 - METAL DUCTS (continued)

Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

B. Install ducts according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" unless otherwise indicated.

C. Install round ducts in maximum practical lengths.

D. Install ducts with fewest possible joints.

E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.

F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.

G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

H. Install ducts with a clearance of 1 inch (25 mm), plus allowance for insulation thickness.

I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.

J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches (38 mm).

K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.

3.2 INSTALLATION OF EXPOSED DUCTWORK

A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.

B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.

D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
Section 233113 - METAL DUCTS (continued)

E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

A. Seal ducts to Seal Class A according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible":

3.4 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 5, "Hangers and Supports."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Where practical, install concrete inserts before placing concrete.
2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches (100 mm) thick.
4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches (100 mm) thick.

C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 5-1 (Table 5-1M), "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches (610 mm) of each elbow and within 48 inches (1200 mm) of each branch intersection.

D. Hangers Exposed to View: Threaded rod and angle or channel supports.

E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet (5 m).

F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.
Section 233113 - METAL DUCTS (continued)

3.6 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Leakage Tests:

2. Test the following systems:

 a. Supply Ducts with a Pressure Class of 3-Inch wg (750 Pa) or Higher: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 25 percent of total installed duct area for each designated pressure class.

 b. Exhaust Ducts with a Pressure Class of 3-Inch wg (750 Pa) or Higher: Test representative duct sections, selected by Engineer from sections installed, totaling no less than 100 percent of total installed duct area for each designated pressure class.

3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.

4. Test for leaks before applying external insulation.

5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.

6. Give seven days' advance notice for testing.

C. Duct System Cleanliness Tests:

1. Visually inspect duct system to ensure that no visible contaminants are present.

D. Prepare test and inspection reports.

3.8 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.9 DUCT SCHEDULE

A. Supply Ducts:
Section 233113 - METAL DUCTS (continued)

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive 2-inch wg (500 Pa).

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive 3-inch wg (750 Pa).
 b. SMACNA Leakage Class for Rectangular: 6.
 c. SMACNA Leakage Class for Round and Flat Oval: 6.

3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive 2-inch wg (500 Pa).

B. Return Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 2-inch wg (500 Pa).

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg (500 Pa).

3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg (500 Pa).

C. Exhaust Ducts:

1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 a. Pressure Class: Negative 2-inch wg (500 Pa).

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg (500 Pa).

3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg (500 Pa).

D. Outdoor-Air (Not Filtered, Heated, or Cooled) Ducts:

1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 a. Pressure Class: Positive or negative 2-inch wg (500 Pa).

2. Ducts Connected to Air-Handling Units:
 a. Pressure Class: Positive or negative 2-inch wg (500 Pa).
Section 233113 - METAL DUCTS (continued)

3. Ducts Connected to Equipment Not Listed Above:
 a. Pressure Class: Positive or negative 2-inch wg (500 Pa).

E. Intermediate Reinforcement:
 1. Galvanized-Steel Ducts: Galvanized steel or carbon steel coated with zinc-chromate primer.

F. Double-Wall Duct Interstitial Insulation:
 1. Supply Air Ducts: 2 inches (51 mm) thick.

G. Elbow Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 b. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 1) Mitered elbows are not allowed in Noise Critical Spaces designated in Specification 230548 "Noise and Vibration Control for Mechanical Systems."

 2. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 1) Radius-to-Diameter Ratio: 1.5.
 b. Round Elbows, 12 Inches (305 mm) and Smaller in Diameter: Stamped or pleated.
 c. Round Elbows, 14 Inches (356 mm) and Larger in Diameter: Welded.

H. Branch Configuration:
 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-6, "Branch Connection."
 a. Rectangular Main to Rectangular Branch: 45-degree entry.
 b. Rectangular Main to Round Branch: 45-degree side take-off.

 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
Section 233113 - METAL DUCTS (continued)

a. Velocity 1000 fpm (5 m/s) or Lower: Conical tap.
b. Velocity 1000 to 1500 fpm (5 to 7.6 m/s): Conical tap.
c. Velocity 1500 fpm (7.6 m/s) or Higher: 45-degree lateral.

END OF SECTION 233113
PART I - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Backdraft and pressure relief dampers.
 3. Control dampers.
 4. Fire dampers.
 5. Flange connectors.
 6. Turning vanes.
 7. Duct-mounted access doors.
 8. Flexible connectors.
 10. Duct security bars.
 11. Duct accessory hardware.

B. Related Requirements:
 1. Section 283111 "Digital, Addressable Fire-Alarm System" for duct-mounted fire and smoke detectors.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

1.4 INFORMATIONAL SUBMITTALS

A. Source quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.
Section 233300 - AIR DUCT ACCESSORIES (continued)

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 1. Galvanized Coating Designation: G60 (Z180).
 2. Exposed-Surface Finish: Mill phosphatized.

B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2D finish for concealed ducts and No. 2B finish for exposed ducts.

C. Aluminum Sheets: Comply with ASTM B 209 (ASTM B 209M), Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

F. Tie Rods: Galvanized steel, 1/4-inch (6-mm) minimum diameter for lengths 36 inches (900 mm) or less; 3/8-inch (10-mm) minimum diameter for lengths longer than 36 inches (900 mm).

2.3 BACKDRAFT AND PRESSURE RELIEF DAMPERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Ruskin Company; CBD4 or comparable product by one of the following:
 2. Nailor Industries Inc.
 3. Ruskin Company.

B. Description: Gravity balanced.

C. Maximum Air Velocity: 3000 fpm (15 m/s).

D. Maximum System Pressure: 3-inch wg (0.8 kPa).
Section 233300 - AIR DUCT ACCESSORIES (continued)

E. Frame: Hat-shaped, 0.081-inch- (2.1-mm-) thick extruded aluminum, with welded corners or mechanically attached.

F. Blades: Multiple single-piece blades, end pivoted, maximum 6-inch (150-mm) width, 0.070-inch- (1.8-mm-) thick aluminum sheet with sealed edges.

G. Blade Action: Parallel.

H. Blade Seals: Extruded vinyl, mechanically locked.

I. Blade Axles:
 1. Material: Nonmetallic.
 2. Diameter: 0.50 inch (13 mm).

J. Tie Bars and Brackets: Aluminum.

K. Return Spring: Adjustable tension.

L. Bearings: Steel ball.

M. Accessories:
 1. Counterweights and spring-assist kits for vertical airflow installations.
 2. 90-degree stops.

2.4 MANUAL VOLUME DAMPERS

A. Standard, Steel, Manual Volume Dampers:
 1. Basis-of-Design Product: Subject to compliance with requirements, provide Ruskin Company; MD35 or comparable product by one of the following:
 a. Nailor Industries Inc.
 b. Ruskin Company.
 c. Trox USA Inc.

 2. Standard leakage rating, with linkage outside airstream.
 3. Suitable for horizontal or vertical applications.
 4. Frames:
 a. Frame: Hat-shaped, 0.064-inch- (1.62-mm-) thick, galvanized sheet steel.
 b. Mitered and welded corners.
 c. Flanges for attaching to walls and flangeless frames for installing in ducts.

 5. Blades:
 a. Multiple or single blade.
 b. Opposed-blade design.
 c. Stiffen damper blades for stability.
 d. Galvanized -steel, 0.064 inch (1.62 mm) thick.
Section 233300 - AIR DUCT ACCESSORIES (continued)

7. Bearings:
 a. Molded synthetic.
 b. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
8. Tie Bars and Brackets: Galvanized steel.

B. Jackshaft:
 1. Size: 1-inch (25-mm) diameter.
 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

C. Damper Hardware:
 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch- (2.4-mm-) thick zinc-plated steel, and a 3/4-inch (19-mm) hexagon locking nut.
 2. Include center hole to suit damper operating-rod size.
 3. Include elevated platform for insulated duct mounting.

2.5 CONTROL DAMPERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Ruskin Company; CD60 or comparable product by one of the following:
 2. Nailor Industries Inc.
 3. Ruskin Company.

B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

C. Frames:
 1. Hat shaped.
 2. 0.064-inch- (1.62-mm-) thick, galvanized sheet steel.
 3. Mitered and welded corners.

D. Blades:
 1. Multiple blade with maximum blade width of 6 inches (152 mm).
 2. Opposed-blade design.
 4. 0.0747-inch- (1.9-mm-) thick dual skin.
Section 233300 - AIR DUCT ACCESSORIES (continued)

E. Blade Axles: 1/2-inch- (13-mm-) diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.

1. Operating Temperature Range: From minus 40 to plus 200 deg F (minus 40 to plus 93 deg C).

F. Bearings:

1. Stainless-steel sleeve.
2. Dampers in ducts with pressure classes of 3-inch wg (750 Pa) or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
3. Thrust bearings at each end of every blade.

2.6 FIRE DAMPERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Ruskin Company, IBD or comparable product by one of the following:

2. Nailor Industries Inc.
3. Ruskin Company.

B. Type: Static; rated and labeled according to UL 555 by an NRTL.

C. Fire Rating: 1-1/2 hours.

D. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch- (0.85-mm-) thick galvanized steel; with mitered and interlocking corners.

E. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.

1. Minimum Thickness: 0.036 (1.0 mm) thick, as indicated, and of length to suit application.
2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.

F. Mounting Orientation: Vertical or horizontal as indicated.

G. Blades: Roll-formed, interlocking, 0.024-inch- (0.61-mm) thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch- (0.85-mm-) thick, galvanized-steel blade connectors.

H. Horizontal Dampers: Include blade lock and stainless-steel closure spring.

I. Heat-Responsive Device: Replaceable, 165 deg F (74 deg C) rated, fusible links.
Section 233300 - AIR DUCT ACCESSORIES (continued)

2.7 FLANGE CONNECTORS
 A. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
 B. Material: Galvanized steel.
 C. Gage and Shape: Match connecting ductwork.

2.8 TURNING VANES
 A. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
 B. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
 C. Vane Construction: Single wall for ducts up to 48 inches (1200 mm) wide and double wall for larger dimensions.

2.9 DUCT-MOUNTED ACCESS DOORS
 1. Door:
 a. Double wall, rectangular.
 b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 c. Hinges and Latches: 1-by-1-inch (25-by-25-mm) butt or piano hinge and cam latches.
 d. Fabricate doors airtight and suitable for duct pressure class.
 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 3. Number of Hinges and Locks:
 a. Access Doors Less Than 12 Inches (300 mm) Square: No hinges and two sash locks.
 b. Access Doors up to 18 Inches (460 mm) Square: Two hinges and two sash locks.
 c. Access Doors up to 24 by 48 Inches (600 by 1200 mm): Three hinges and two compression latches with outside and inside handles.
 d. Access Doors Larger Than 24 by 48 Inches (600 by 1200 mm): Four hinges and two compression latches with outside and inside handles.
Section 233300 - AIR DUCT ACCESSORIES (continued)

2.10 DUCT ACCESS PANEL ASSEMBLIES

A. Labeled according to UL 1978 by an NRTL.

B. Panel and Frame: Minimum thickness 0.0428-inch (1.1-mm) stainless steel.

C. Fasteners: Stainless steel. Panel fasteners shall not penetrate duct wall.

D. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F (1093 deg C).

E. Minimum Pressure Rating: 10-inch wg (2500 Pa), positive or negative.

2.11 FLEXIBLE CONNECTORS

A. Materials: Flame-retardant or noncombustible fabrics.

B. Coatings and Adhesives: Comply with UL 181, Class 1.

C. Metal-Edged Connectors: Factory fabricated with a fabric strip 5-3/4 inches (146 mm) wide attached to two strips of 2-3/4-inch- (70-mm-) wide, 0.028-inch- (0.7-mm-) thick, galvanized sheet steel or 0.032-inch- (0.8-mm-) thick aluminum sheets. Provide metal compatible with connected ducts.

 1. Minimum Weight: 26 oz./sq. yd. (880 g/sq. m).
 2. Tensile Strength: 480 lbf/inch (84 N/mm) in the warp and 360 lbf/inch (63 N/mm) in the filling.
 3. Service Temperature: Minus 40 to plus 200 deg F (Minus 40 to plus 93 deg C).

E. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 1. Minimum Weight: 24 oz./sq. yd. (810 g/sq. m).
 2. Tensile Strength: 530 lbf/inch (93 N/mm) in the warp and 440 lbf/inch (77 N/mm) in the filling.
 3. Service Temperature: Minus 50 to plus 250 deg F (Minus 45 to plus 121 deg C).

2.12 INSULATED FLEXIBLE DUCTS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Flexmaster USA; Type SM or comparable product by one of the following:
 1. Flexmaster U.S.A., Inc.
 2. McGill AirFlow LLC.
Section 233300 - AIR DUCT ACCESSORIES (continued)

B. Insulated, Flexible Duct: UL 181, Class 1, trilaminate of aluminum foil, fiberglass and aluminumized polyester supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminumized vapor-barrier film.

1. Pressure Rating: 10-inch wg (2500 Pa) positive and negative.
3. Temperature Range: Minus 20 to plus 210 deg F (Minus 29 to plus 99 deg C).
4. Insulation R-value: Comply with ASHRAE/IESNA 90.1.

C. Flexible Duct Connectors:

1. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches (75 through 460 mm), to suit duct size.

2.13 DUCT SECURITY BARS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on drawings or comparable product by one of the following:

1. Carnes.
2. KEES, Inc.
3. Metal Form Manufacturing, Inc.

B. Description: Factory-fabricated and field-installed duct security bars.

C. Configuration:

1. Frame: 2 by 1/4 inch (51 by 6 mm) flat frame.
2. Sleeve: 3/16-inch (4.8-mm), continuously welded steel frames with 1-by-1-by-3/16-inch (25-by-25-by-4.8-mm) angle frame factory welded to end furnished loose for field welding on other end. To be poured in place or set with concrete block or welded or bolted to wall, one side only. Duct connections on both sides.
3. Horizontal Bars: 1/2 inch (13 mm).
4. Vertical Bars: 1/2 inch (13 mm).
5. Bar Spacing: 6 inches (150 mm).
6. Mounting: Ductwork or other framing.

2.14 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
Section 233300 - AIR DUCT ACCESSORIES (continued)

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.

B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install backdraft dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.

D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 1. Install steel volume dampers in steel ducts.
 2. Install aluminum volume dampers in aluminum ducts.
 3. [Blank]

E. Set dampers to fully open position before testing, adjusting, and balancing.

F. Install test holes at fan inlets and outlets and elsewhere as indicated.

G. Install fire dampers according to UL listing.

H. Install duct security bars. Construct duct security bars from 0.164-inch (4.18-mm) steel sleeve, continuously welded at all joints and 1/2-inch- (13-mm-) diameter steel bars, 6 inches (150 mm) o.c. in each direction in center of sleeve. Weld each bar to steel sleeve and each crossing bar. Weld 2-1/2-by-2-1/2-by-1/4-inch (63-by-63-by-6-mm) steel angle to 4 sides and both ends of sleeve. Connect duct security bars to ducts with flexible connections. Provide 12-by-12-inch (300-by-300-mm) hinged access panel with cam lock in duct in each side of sleeve.

I. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 1. On both sides of duct coils.
 2. Upstream and downstream from duct filters.
 3. At outdoor-air intakes and mixed-air plenums.
 4. At drain pans and seals.
 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 6. Adjacent to and close enough to fire or smoke dampers, to reset or reinstall fusible links. Access doors for access to fire or smoke dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
 7. Upstream or downstream from duct silencers.
Section 233300 - AIR DUCT ACCESSORIES (continued)

8. Control devices requiring inspection.
9. Downstream of terminal units with reheat coils.
10. Elsewhere as indicated.

J. Install access doors with swing against duct static pressure.

K. Access Door Sizes:
 1. One-Hand or Inspection Access: 8 by 5 inches (200 by 125 mm).
 2. Two-Hand Access: 12 by 6 inches (300 by 150 mm).

L. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.

M. Install flexible connectors to connect ducts to equipment.

N. Connect terminal units to supply ducts directly or with maximum 24-inch (600-mm) lengths of flexible duct. Do not use flexible ducts to change directions.

O. Connect diffusers to ducts directly or with maximum 72-inch (1800-mm) lengths of flexible duct clamped or strapped in place.

P. Connect flexible ducts to metal ducts with draw bands.

Q. Install duct test holes where required for testing and balancing purposes.

3.2 FLEXIBLE CONNECTOR SCHEDULE

A. Indoor equipment, non-corrosive environment with airstream not in excess of 200 deg F (93 deg C): Indoor system, flexible connector fabric.

B. Outdoor equipment, non-corrosive environment with airstream not in excess of 200 deg F (93 deg C): Outdoor system, flexible connector fabric.

C. Indoor and outdoor equipment, corrosive environment: High-Corrosive-Environment System, Flexible Connectors. Systems to include but not limited to the following:

 1. Laboratory exhaust fans.

3.3 FIELD QUALITY CONTROL

A. Tests and Inspections:

 1. Operate dampers to verify full range of movement.
 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 3. Operate fire, smoke, and combination fire and smoke dampers to verify full range of movement and verify that proper heat-response device is installed.
Section 233300 - AIR DUCT ACCESSORIES (continued)

4. Inspect turning vanes for proper and secure installation.

END OF SECTION 233300
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Propeller fans.

1.3 PERFORMANCE REQUIREMENTS

A. Project Altitude: Base fan-performance ratings on sea level.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 4. Material thickness and finishes, including color charts.
 5. Dampers, including housings, linkages, and operators.
 6. Roof curbs.
 7. Fan speed controllers.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

 1. Belts: One set(s) for each belt-driven unit.
Section 233423 - HVAC POWER VENTILATORS (continued)

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

1.8 COORDINATION

A. Coordinate size and location of structural-steel support members.

B. Coordinate sizes and locations of concrete bases with actual equipment provided.

C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 PROPELLER FANS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Carnes Company.
2. Greenheck Fan Corporation.
3. Loren Cook Company.
4. PennBarry.

B. Housing: Galvanized-steel sheet with flanged edges and integral orifice ring with baked-enamel finish coat applied after assembly.

C. Steel Fan Wheels: Formed-steel blades riveted to heavy-gage steel spider bolted to cast-iron hub.

D. Fan Wheel: Replaceable, cast-aluminum, airfoil blades fastened to cast-aluminum hub; factory set pitch angle of blades.

E. Fan Drive:

1. Resiliently mounted to housing.
2. Statically and dynamically balanced.
3. Selected for continuous operation at maximum rated fan speed and motor horsepower, with final alignment and belt adjustment made after installation.
4. Extend grease fitting to accessible location outside of unit.
5. Service Factor Based on Fan Motor Size: 1.4.
Section 233423 - HVAC POWER VENTILATORS (continued)

6. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 a. Ball-Bearing Rating Life: ABMA 9, L5 of 200,000 hours.
8. Pulleys: Cast iron with split, tapered bushing; dynamically balanced at factory.
9. Motor Pulleys: Adjustable pitch for use with motors through 5 hp; fixed pitch for use with larger motors. Select pulley so pitch adjustment is at the middle of adjustment range at fan design conditions.
10. Belts: Oil resistant, nonsparking, and nonstatic; matched sets for multiple belt drives.

F. Accessories:

1. Gravity Shutters: Aluminum blades in aluminum frame; interlocked blades with nylon bearings.
3. Wall Sleeve: Galvanized steel to match fan and accessory size.
4. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
5. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.

2.2 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

B. Enclosure Type: Totally enclosed, fan cooled.

2.3 SOURCE QUALITY CONTROL

A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.
3.1 INSTALLATION

A. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."

B. Install ducts adjacent to power ventilators to allow service and maintenance.

C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 3. Verify that cleaning and adjusting are complete.
 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 5. Adjust belt tension.
 6. Adjust damper linkages for proper damper operation.
 7. Verify lubrication for bearings and other moving parts.
 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 9. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 10. Shut unit down and reconnect automatic temperature-control operators.
 11. Remove and replace malfunctioning units and retest as specified above.

C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Prepare test and inspection reports.
Section 233423 - HVAC POWER VENTILATORS (continued)

3.4 ADJUSTING

A. Adjust damper linkages for proper damper operation.

B. Adjust belt tension.

C. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.

D. Replace fan and motor pulleys as required to achieve design airflow.

E. Lubricate bearings.

END OF SECTION 233423
This Page Left Intentionally Blank
PART I - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. This Section includes the following:
 1. High-Plume Dilution Laboratory Exhaust System

1.3 PERFORMANCE REQUIREMENTS
A. Project Altitude: Base fan performance ratings on sea level.
B. Operating Limits: Classify according to AMCA 99.

1.4 SUBMITTALS
A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:
 1. Certified fan performance curves with system operating conditions indicated.
 2. Certified fan sound-power ratings.
 3. Provide nozzle velocity of exhaust fan, total exhaust flow and discharge plume height at specified wind velocity
 4. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 5. Material thickness and finishes, including color charts.
 6. Dampers, including housings, linkages, and operators.
B. Field quality-control test reports.
C. Operation and Maintenance Data: For centrifugal fans to include in emergency, operation, and maintenance manuals.

1.5 QUALITY ASSURANCE
A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.
C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA 1.
D. NFPA Compliance: Fans shall comply with NFPA 45 "Fire Protection for Laboratories Using Chemicals,"
Section 233427 – LABORATORY EXHAUST FANS (continued)

1.6 DELIVERY, STORAGE, AND HANDLING
 A. Deliver fans as factory-assembled units, to the extent allowable by shipping limitations, with protective crating and covering.
 B. Disassemble and reassemble units, as required for moving to the final location, according to manufacturer's written instructions.
 C. Lift and support units with manufacturer's designated lifting or supporting points.

1.7 COORDINATION
 A. Coordinate size and location of structural-steel support members.
 B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 23 Section "Roof Accessories."

1.8 EXTRA MATERIALS
 A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Belts: One set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.1 MIXED FLOW LABORATORY EXHAUST FANS
 A. Basis-of-Design Product: Subject to compliance with requirements, provide the product indicated on Drawings or a comparable product by one of the following:
 1. Strobic Air Corp.
 2. Loren Cook Co.
 3. Greenheck Fan Co.
 B. General.
 1. Fans selected shall be capable of accommodating static pressure and flow variations of +/- 15% of scheduled valves.
 2. Each fan shall be belt driven in AMCA arrangement 10 or direct drive in arrangement 4.
 3. Fans shall be equipped with lifting lugs.
 4. Fan stand shall be coated steel with a minimum of 4 mils of Dupont 25P epoxy.
 5. Fasteners shall be 316 stainless steel.
 6. Fan assemblies shall be designed for mounting on conventional roof curb without the need for guy wire supports.
 7. Fans shall be modular construction and capable of being assembled on the roof.
 8. PTFE gaskets shall be provided at all companion flanged joints.
 9. Fans and accessories shall have internal drain systems to prevent rain water from entering building duct system.
 C. Corrosion Resistant Coating.
 1. Fan and system components (fan, nozzle, windband and plenum) shall be corrosion resistant coated with a two part electrostatically applied and baked, sustainable, corrosion
resistant coating system. Standard finish color to be grey.

2. All parts shall be cleaned and chemically prepared for coating using a multi-stage wash system which includes acid pickling that removes oxide, increases surface area, and improves coating bond to the substrate.

3. The first powder coat applied over the prepared surface shall be a zinc rich epoxy primer (no less than 70% zinc) and heated to a gelatinous consistency (partial cure) at which the second powder coat of polyester resin shall be electrostatically applied and simultaneously be cured at a uniform temperature of 400°F.

4. The coating system, a total thickness of up to 6 mils, is not affected by the UV component of sunlight (does not chalk), and has corrosion resistance to acid, alkali, and solvents. Coating system shall exceed 4000 hour ASTM B117 Salt Spray.

D. Fan Housing and Outlet

1. Fan housing shall be aerodynamically designed with high-efficiency inlet, engineered to reduce incoming air turbulence.

2. Fan housing shall be bifurcated, allowing all drive components, including the motor, to be serviced without contact of the contaminated airstream. Must be manufactured of welded steel with corrosion resistant coating.

3. A multi-stage air induction discharge nozzle shall be supplied by the fan manufacturer, and be designed to efficiently handle an outlet velocity of up to 7000 FPM. The multi-stage nozzle shall induce ambient air up to 270% of fan capacity. Nozzle / windband assemblies that are manufactured by third party vendors or that are fabricated of plastic or resins, having mechanical properties less than steel shall not be acceptable.

4. An integral fan housing drain shall be used to drain rainwater when the fan is de-energized.

5. An access door shall be supplied for impeller inspection and service.

6. Fan assembly shall be AMCA type C spark resistant construction minimum or as noted on the schedule.

E. Fan Impeller

1. Fan impeller shall be mixed flow design with non-stall characteristics. The impeller shall be electronically balanced both statically and dynamically exceeding AMCA Standards.

2. Fan impeller shall be manufactured of welded with corrosion resistant coating.

3. Vacuum Seal: Fan impeller shall include a secondary fan blade located on the impeller back plate. This secondary impeller shall create a negative pressure at the shaft opening; preventing hazardous or toxic exhaust fumes from escaping through the housing shaft opening. Mechanical shaft seals that wear out and need to be replaced or seal systems that use hoses or tubes that can leak, are not acceptable.

F. Energy Recovery Coil Plenum

1. The energy recovery coil plenum shall be provided as shown on drawings.

2. The plenum deflection shall not exceed 1/200 of panel span at 1.5 times the fan static pressure.

3. Plenum construction consists of an all-welded structural steel base, a stainless steel tube and double wall insulated panels for walls, floor, interior partitions and roof. Construction shall be specifically designed for outdoor installation.

4. Plenum unit base shall be constructed of welded structural steel with removable lifting lugs. Base shall be coated with corrosion resistant grey urethane modified enamel.

5. Panels shall be two inch double-wall, 18 gauge corrosion resistant polyester coated pre-treated galvanized outer walls and 22 gauge, 304 stainless steel inner walls. Plenum insulation shall be no less than 2 Lb. /ft², two inch thick foam in place polyurethane for
additional structural rigidity. Panels shall be individually removable. Plenum floor shall be insulated with foam in place fiberglass insulation.

6. Plenum roof panels shall be a standing seam assembly fabricated of corrosion resistant 18 gauge corrosion resistant polyester coated pre-treated galvanized, and sloped. Panel edges shall extend beyond the edge of the plenum casing to ensure water drainage.

7. Fasteners exposed to corrosive exhaust shall be stainless steel.

8. Insulated double wall access doors, hinged and gasketed with tooled-entry handles shall be provided for access to any plenum areas requiring routine maintenance, both upstream and downstream of coil and filters, as shown on the drawings.

9. A filter section shall be provided at the air inlet of the energy recovery coil plenum. Filter racks shall be 304 stainless steel. Filters will be mounted for side access and are sized for a maximum face velocity of 500 ft/min. Filter size shall be two inch.

10. Drain pan shall be 18ga, 304 stainless steel with raised coil supports.

G. Energy Recovery Coil
1. An ARI-410-2001 rated energy recovery coil(s) shall be provided within the energy recovery coil plenum, performance parameters as specified in the schedule.
2. The coil shall be constructed of a seamless copper tube primary surface with a wall thickness of 0.025 inch and an aluminum plate fin sine-wave surface with a thickness of 0.008 inch.
3. The coil shall be provided with copper headers and MPT carbon steel coil connections.
4. The coil casing shall be constructed of 304 stainless steel.
5. The coil shall be corrosion resistant coated with baked Heresite Phenolic resin (P413C)
6. The coil shall be tested under water and guaranteed to withstand 450 PSIG of dry nitrogen.

H. Plenum Curb
1. Plenum manufacturer shall supply a structural support curb for the plenum of specified height as shown on drawings.
2. Curb shall be fabricated of a minimum of 12 gauge welded steel, structurally reinforced with corrosion resistant coating.
3. Curb shall be internally insulated with one inch thick, 6 Lb./ft³ density insulation.
4. Properly anchored to the roof structure, the curb and plenum assembly shall withstand wind loads of up to 120 mph without additional structural support.

I. Fan Bypass Air Plenum
1. A bypass air plenum shall be provided as shown on drawings. The plenum shall be provided with bypass air damper(s) for introducing outside air at roof level upstream of the fan, complete with bypass air weatherhood and bird screen.
2. The plenum shall be a double-wall construction, coated exterior with a stainless steel inner liner.
3. The bypass air plenum shall be mounted on factory fabricated roof curb provided by the fan manufacturer, as shown on the project drawings.
4. Fan designs that use inlet flexible connectors that can leak causing loss of lab exhaust shall not be permitted.
5. Bypass air damper(s) shall be opposed-blade design for airflow control, airfoil design, fabricated of galvanized steel for structural rigidity as standard. Bypass damper(s) shall have plated steel damper rods, stainless steel sleeved bearings, 301 stainless steel jamb seals and the blades shall have polymer edge seals. Damper model shall be equal to or exceed a heavy duty control damper, Greenheck HCD-130. Damper blade drive linkage shall be set by manufacturer and welded to eliminate linkage slippage. All damper
access and service (drive actuators) shall be performed outside of the contaminated airstream.

6. Fan isolation damper(s), shall be opposed-blade design, airfoil design, fabricated of 304 stainless steel construction for structural rigidity as standard. Damper(s) shall be coated up to 4 mils of chemically resistant Hi-Pro Polyester resin, electrostatically applied and baked. Isolation damper(s) shall have plated steel damper rods (if specified as 304 stainless steel damper, stainless steel damper rods will be provided), stainless steel sleeved bearings, 301 stainless steel jamb seals and the blades shall have polymer edge seals. Damper model shall be equal to or exceed a heavy duty control damper, Greenheck HCD-130. Damper blade drive linkage shall be set by manufacturer and welded to eliminate linkage slippage. All damper access and service (drive actuators) shall be performed outside of the contaminated airstream.

7. Isolation damper actuator(s), if scheduled, shall be factory mounted and shall be wired to a step-down transformer. Actuator and transformer are located in a weatherproof enclosure.

8. Blower / Plenum vibration isolation shall be limited to neoprene / cork vibration pads.

J. Fan Motors and Drive

1. Motors shall be premium efficiency, standard NEMA frame, 1800 or 3600 RPM, TEFC with a 1.15 service factor. A factory-mounted NEMA 3R disconnect switch shall be provided for each fan.

2. Motor maintenance shall be accomplished without fan impeller removal or requiring maintenance personnel to access the contaminated exhaust components. Drive arrangement shall be AMCA arrangement 9. Direct drive arrangement 4, or direct drive arrangements requiring access and handling of hazardous and contaminated fan components for motor replacement are not acceptable.

3. Drive belts and sheaves shall be sized for 200% of the fan operating brake horsepower, and shall be readily and easily accessible for service, if required. Drive shall consist of a minimum of two belts under all circumstances.

4. Fan shaft to be turned and polished of 1040 steel material as standard, coated with corrosion resistant coating.

5. Fan shaft bearings shall be Air Handling Quality, ball or roller pillow block type and be sized for an L-10 life of no less than 200,000 hours. Bearings shall be fixed to the fan shaft using concentric mounting locking collars, which reduce vibration, increase service life, and improve serviceability. Bearings that use setscrews shall not be acceptable.

6. All shaft bearings and non-permanently lubricated motors shall have nylon extended lube lines with Zerk fittings.

7. Belt drive motors shall have ventilated motor cover. Motor cover shall be hinged with removable side panels for ease of maintenance to allow the servicing of the motor and drive(s).

2.2 SOURCE QUALITY CONTROL

A. Sound-Power Level Ratings: Comply with AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.

B. Fan Performance Ratings: Establish flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests and ratings according to AMCA 210, "Laboratory Methods of Testing Fans for Rating."
3.1 INSTALLATION
 A. Install fans level and plumb.
 B. Support units using spring isolators having a static deflection of 2 inches. Vibration- and seismic-control devices are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."
 C. Install units with clearances for service and maintenance.
 D. Label fans according to requirements specified in Division 23 Section "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS
 A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Air Duct Accessories."
 B. Install ducts adjacent to fans to allow service and maintenance.
 C. Install line-sized piping from scroll drain connection, with trap with seal equal to 1.5 times specified static pressure, to nearest floor drain.
 D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."
 E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL
 A. Perform the following field tests and inspections and prepare test reports:
 1. Verify that shipping, blocking, and bracing are removed.
 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 3. Verify that cleaning and adjusting are complete.
 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 5. Adjust belt tension.
 6. Adjust damper linkages for proper damper operation.
 7. Verify lubrication for bearings and other moving parts.
 8. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 9. Refer to Division 23 Section "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
Section 233427 – LABORATORY EXHAUST FANS (continued)

10. Remove and replace malfunctioning units and retest as specified above.
B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.4 DEMONSTRATION
A. Train Owner's maintenance personnel to adjust, operate, and maintain centrifugal fans. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 233427
Section 233500 - ROOF ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Roof curbs.
 2. Equipment supports.

1.3 PERFORMANCE REQUIREMENTS
A. General Performance: Roof accessories shall withstand exposure to weather and resist thermally induced movement without failure, rattling, leaking, or fastener disengagement due to defective manufacture, fabrication, installation, or other defects in construction.

1.4 ACTION SUBMITTALS
A. Product Data: For each type of roof accessory indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
B. Shop Drawings: For roof accessories. Include plans, elevations, keyed details, and attachments to other work. Indicate dimensions, loadings, and special conditions. Distinguish between plant- and field-assembled work.

1.5 COORDINATION
A. Coordinate layout and installation of roof accessories with roofing membrane and base flashing and interfacing and adjoining construction to provide a leakproof, weathertight, secure, and noncorrosive installation.
B. Coordinate dimensions with rough-in information or Shop Drawings of equipment to be supported.
Section 233500 - ROOF ACCESSORIES (continued)

PART 2 - PRODUCTS

2.1 MISCELLANEOUS MATERIALS

A. General: Provide materials and types of fasteners, protective coatings, sealants, and other miscellaneous items required by manufacturer for a complete installation.

B. Glass-Fiber Board Insulation: ASTM C 726, thickness as indicated.

C. Wood Nailers: Softwood lumber, pressure treated with waterborne preservatives for aboveground use, acceptable to authorities having jurisdiction, containing no arsenic or chromium, and complying with AWPA C2; not less than 1-1/2 inches (38 mm) thick.

D. Fasteners: Roof accessory manufacturer's recommended fasteners suitable for application and metals being fastened. Match finish of exposed fasteners with finish of material being fastened. Provide nonremovable fastener heads to exterior exposed fasteners. Furnish the following unless otherwise indicated:

1. Fasteners for Zinc-Coated or Aluminum-Zinc Alloy-Coated Steel: Series 300 stainless steel or hot-dip zinc-coated steel according to ASTM A 153/A 153M or ASTM F 2329.
2. Fasteners for Aluminum Sheet: Aluminum or Series 300 stainless steel.
3. Fasteners for Copper Sheet: Copper, hardware bronze, or passivated Series 300 stainless steel.
4. Fasteners for Stainless-Steel Sheet: Series 300 stainless steel.

E. Gaskets: Manufacturer's standard tubular or fingered design of neoprene, EPDM, PVC, or silicone or a flat design of foam rubber, sponge neoprene, or cork.

F. Elastomeric Sealant: ASTM C 920, elastomeric silicone polymer sealant as recommended by roof accessory manufacturer for installation indicated; low modulus; of type, grade, class, and use classifications required to seal joints and remain watertight.

2.2 ROOF CURBS

A. Roof Curbs: Internally reinforced roof-curb units capable of supporting superimposed live and dead loads, including equipment loads and other construction indicated on Drawings; with welded or mechanically fastened and sealed corner joints, integral metal cant, and integrally formed deck-mounting flange at perimeter bottom.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. AES Industries, Inc.
 b. Milcor Inc.; Commercial Products Group of Hart & Cooley, Inc.
 c. Pate Company (The).
 d. Thybar Corporation.
Section 233500 - ROOF ACCESSORIES (continued)

B. Size: Coordinate dimensions with roughing-in information or Shop Drawings of equipment to be supported.

C. Material: Zinc-coated (galvanized) steel sheet, 0.052 inch (1.32 mm) thick.
 1. Finish: Mill phosphatized.

D. Construction:
 1. Insulation: Factory insulated with 1-1/2-inch- (38-mm-) 3-inch- (76-mm-) thick glass-fiber board insulation.
 2. Liner: Same material as curb, of manufacturer's standard thickness and finish.
 3. Factory-installed wood nailer at top of curb, continuous around curb perimeter.
 4. On ribbed or fluted metal roofs, form deck-mounting flange at perimeter bottom to conform to roof profile.
 5. Fabricate curbs to minimum height of 12 inches (300 mm) unless otherwise indicated.
 6. Top Surface: Level around perimeter with roof slope accommodated by sloping the deck-mounting flange.
 7. Sloping Roofs: Where roof slope exceeds 1:48, fabricate curb with perimeter curb height tapered to accommodate roof slope so that top surface of perimeter curb is level. Equip unit with water diverter or cricket on side that obstructs water flow.

E. Vent Stack Flashing: Metal flashing sleeve, uninsulated, with integral deck flange.
 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 a. Custom Solution Roof and Metal Products.
 b. Milcor Inc.; Commercial Products Group of Hart & Cooley, Inc.
 c. Thaler Metal USA Inc.

2. Metal: Copper sheet, 16 oz. (0.55 mm) thick.
3. Height: 13 inches (330 mm).
4. Diameter: As indicated.
5. Finish: Manufacturer's standard.

2.3 GENERAL FINISH REQUIREMENTS

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
Section 233500 - ROOF ACCESSORIES (continued)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, to verify actual locations, dimensions, and other conditions affecting performance of the Work.

B. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.

C. Verify dimensions of roof openings for roof accessories.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. General: Install roof accessories according to manufacturer's written instructions.

1. Install roof accessories level, plumb, true to line and elevation, and without warping, jogs in alignment, excessive oil canning, buckling, or tool marks.

2. Anchor roof accessories securely in place so they are capable of resisting indicated loads.

3. Use fasteners, separators, sealants, and other miscellaneous items as required to complete installation of roof accessories and fit them to substrates.

4. Install roof accessories to resist exposure to weather without failing, rattling, leaking, or loosening of fasteners and seals.

B. Metal Protection: Protect metals against galvanic action by separating dissimilar metals from contact with each other or with corrosive substrates by painting contact surfaces with bituminous coating or by other permanent separation as recommended by manufacturer.

1. Coat concealed side of uncoated aluminum roof accessories with bituminous coating where in contact with wood, ferrous metal, or cementitious construction.

2. Underlayment: Where installing roof accessories directly on cementitious or wood substrates, install a course of felt underlayment and cover with a slip sheet, or install a course of polyethylene sheet.

C. Roof Curb Installation: Install each roof curb so top surface is level.

D.

E. Preformed Flashing-Sleeve Installation: Secure flashing sleeve to roof membrane according to flashing-sleeve manufacturer's written instructions.

F. Seal joints with elastomeric sealant as required by roof accessory manufacturer.
Section 233500 - ROOF ACCESSORIES (continued)

3.3 REPAIR AND CLEANING

A. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing according to ASTM A 780.

B. Touch up factory-primed surfaces with compatible primer ready for field painting according to Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

C. Clean exposed surfaces according to manufacturer's written instructions.

D. Clean off excess sealants.

E. Replace roof accessories that have been damaged or that cannot be successfully repaired by finish touchup or similar minor repair procedures.

END OF SECTION 233500
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Shut-off, single-duct air terminal units.
 2. Exhaust single-duct terminal units.
 3. Casing liner.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of air terminal unit.
 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for air terminal units.
 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Delegated-Design Submittal:
 1. Materials, fabrication, assembly, and spacing of hangers and supports.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Size and location of initial access modules for acoustic tile.
 3. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.

B. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air terminal units to include in emergency, operation, and maintenance manuals.
Section 233600 - AIR TERMINAL UNITS (continued)

1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 a. Instructions for resetting minimum and maximum air volumes.
 b. Instructions for adjusting software set points.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-up."

C. ASHRAE Compliance: Applicable requirements in ASHRAE/IES 90.1, "Section 6 - Heating, Ventilating, and Air Conditioning."

2.2 SHUTOFF, SINGLE-DUCT AIR TERMINAL UNITS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
 1. Environmental Technologies, Inc.
 2. Titus.
 3. Trane; a business of American Standard Companies.
 4. Daikin

B. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.

C. Casing: 0.034-inch- (0.85-mm-) thick galvanized steel, single wall.
 2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
 3. Air Outlet: S-slip and drive connections.
 4. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

D. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 1. Maximum Damper Leakage: AHRI 880 rated, 2 percent of nominal airflow at 3-inch wg (750-Pa) inlet static pressure.

E. Velocity Sensors: Multipoint array with velocity sensors.
Section 233600 - AIR TERMINAL UNITS (continued)

1. SCR controlled.
2. Access door interlocked disconnect switch.
3. Downstream air temperature sensor with local connection to override discharge-air temperature to not exceed a maximum temperature set point (adjustable).
5. Airflow switch for proof of airflow.
6. Fan interlock contacts.
7. Fuses in terminal box for overcurrent protection (for coils more than 48 A).
8. Magnetic contactor for each step of control (for three-phase coils).

G. Control devices shall be compatible with temperature controls system specified in Section 230900 "Instrumentation and Controls for HVAC."

1. Damper actuator, airflow sensor and microprocessor-based controller shall be provided by Instrumentation and Control sub-contractor and provided to terminal unit manufacturer for factory installation.

2.3 EXHAUST SINGLE-DUCT TERMINAL

A. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.

B. Casing: 0.0375-inch thick galvanized steel, single wall.

1. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
2. Air Outlet: S-slip and drive connections, size matching inlet size.
3. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
4. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

C. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.

1. Maximum Damper Leakage: AHRI 880 rated, 2 percent of nominal airflow at 3-inch wg (750-Pa) inlet static pressure.

D. Control devices shall be compatible with controls system specified in Section 230900 "Instrumentation and Controls for HVAC."

1. Damper actuator, airflow sensor and microprocessor-based controller shall be provided by Instrumentation and Control sub-contractor and provided to terminal unit manufacturer for factory installation.
Section 233600 - AIR TERMINAL UNITS (continued)

2.4 CASING LINER

A. Casing Liner: Flexible elastomeric duct liner fabricated of preformed, cellular, closed-cell, sheet materials complying with ASTM C 534, Type II, Grade 1; and with NFPA 90A or NFPA 90B.

1. Minimum Thickness: 3/4 inch (19 mm).
2. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
3. Liner Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 a. Adhesive VOC Content: 50 g/L or less.
 b. Adhesive shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."

2.5 SOURCE QUALITY CONTROL.

A. Factory Tests: Test assembled air terminal units according to AHRI 880.
 1. Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, and AHRI certification seal.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Ch. 5, "Hangers and Supports" and with Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 1. Where practical, install concrete inserts before placing concrete.
 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches (100 mm) thick.
 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches (100 mm) thick.
 5. Do not use powder-actuated concrete fasteners for seismic restraints.

C. Hangers Exposed to View: Threaded rod and angle or channel supports.

D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
Section 233600 - AIR TERMINAL UNITS (continued)

3.2 TERMINAL UNIT INSTALLATION

A. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."

B. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.

3.3 CONNECTIONS

A. Where installing piping adjacent to air terminal unit, allow space for service and maintenance.

B. Comply with requirements in Section 233113 "Metal Ducts" for connecting ducts to air terminal units.

C. Make connections to air terminal units with flexible connectors complying with requirements in Section 233300 "Air Duct Accessories."

3.4 IDENTIFICATION

A. Apply an equipment label with a unique designation matching the drawing designation or similar secured to the ceiling grid or to the access door serving the unit, to mark the location of all air terminal units suspended above ceilings.

B. In addition to other requirements for equipment labeling, label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows.

C. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for equipment labels and warning signs and labels.

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Air terminal unit will be considered defective if it does not pass tests and inspections.

C. Prepare test and inspection reports.
Section 233600 - AIR TERMINAL UNITS (continued)

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

END OF SECTION 233600
Section 233713.13 - AIR DIFFUSERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Rectangular and square ceiling diffusers.

B. Related Requirements:
 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to diffusers.
 2. Section 233713.23 "Air Registers and Grilles" for adjustable-bar register and grilles, fixed-face registers and grilles, and linear bar grilles.
 4. Section 233716 "Fabric Air-Diffusion Devices" for continuous tubular diffusers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Diffuser Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 5. Duct access panels.
Section 233713.13 - AIR DIFFUSERS (continued)

PART 2 - PRODUCTS

2.1 SQUARE PLAQUE CEILING DIFFUSERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Price: ASPD or a comparable product by one of the following:

1. Carnes Company.
2. METALAIRE, Inc.
3. Nailor Industries Inc.
4. Titus.

B. Devices shall be specifically designed for variable-air-volume flows.

C. Material: Aluminum.

D. Finish: Powder coat, white.

E. Face Size: 24 by 24 inches (600 by 600 mm) unless indicated otherwise.

F. Face Style: Plaque.

G. Pattern: Adjustable.

H. Dampers: Radial opposed blade.

I. Insulation: Factory applied, foil faced, R-6 insulation formed to fit contour of diffuser back, continuously glued and sealed around perimeter of outer cone to form vapor seal.

2.2 LAMINAR FLOW DIFFUSERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Price: LFD.

B. Devices shall be specifically designed for variable-air-volume flows.

C. Material: Aluminum.

D. Finish: Powder coat, white.

E. Face Size: 24 by 24 inches (600 by 600 mm) unless indicated otherwise.

F. Face Style: Perforated.

G. Pattern: Adjustable.

H. Dampers: Butterfly-style.

I. Insulation: Factory applied, foil faced, R-6 insulation formed to fit contour of diffuser back.
Section 233713.13 - AIR DIFFUSERS (continued)

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where diffusers are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install diffusers level and plumb.

B. Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install diffusers with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713.13
Section 233713.23 - AIR REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fixed face registers and grilles.

B. Related Requirements:
 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to registers and grilles.
 2. Section 233713.13 "Air Diffusers" for various types of air diffusers.
 4. Section 233716 "Fabric Air-Diffusion Devices" for continuous tubular diffusers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.
 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 2. Register and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Ceiling suspension assembly members.
 2. Method of attaching hangers to building structure.
 3. Size and location of initial access modules for acoustical tile.
 4. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
 5. Duct access panels.
Section 233713.23 - AIR REGISTERS AND GRILLES (continued)

PART 2 - PRODUCTS

2.1 REGISTERS

A. Fixed Face Register:

1. **Basis-of-Design Product:** Subject to compliance with requirements, provide Price Industries; 635DAL/FL (no filter) and 635DALFF/FL (with filter) or a comparable product by one of the following:

 a. Carnes Company.
 b. Nailor Industries Inc.
 c. Titus.

2. **Material:** Aluminum.
3. **Finish:** Powder coat, white.
4. **Face Blade Arrangement:** Vertical spaced 3/4 inch (19 mm) apart.
5. **Face Arrangement:** 35 degree louvered blades, 1/2 inch spacing.
6. **Core Construction:** Integral.
7. **Frame:** 1 inch (25 mm) wide.
8. **Mounting Frame:** Filter.
9. **Mounting:** Countersunk screw or Lay in as required by ceiling.
10. **Damper Type:** Adjustable opposed blade.
11. **Accessory:** Filter.

2.2 GRILLES

A. Fixed Face Grille:

1. **Basis-of-Design Product:** Subject to compliance with requirements, provide Price Industries; 635FL (no filter) and 635FF/FL (with filter) or a comparable product by one of the following:

 a. Carnes Company.
 b. Nailor Industries Inc.
 c. Titus.

2. **Material:** Aluminum.
3. **Finish:** Powder coat, white.
4. **Face Blade Arrangement:** 35 degree louvered blades; spaced 1/2 inch (13 mm) apart.
5. **Core Construction:** Integral.
6. **Frame:** 1 inch (25 mm) wide.
7. **Mounting Frame:** Filter.
8. **Mounting:** Countersunk screw or Lay in as required by ceiling type.
9. **Accessory:** Filter.
Section 233713.23 - AIR REGISTERS AND GRILLES (continued)

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate registers and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas where registers and grilles are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install registers and grilles level and plumb.

B. Outlets and Inlets Locations: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.

C. Install registers and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust registers and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713.23
Section 233900 - LOUVERS AND VENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section Includes:
 1. Fixed, extruded-aluminum louvers.

1.3 DEFINITIONS
A. Louver Terminology: Definitions of terms for metal louvers contained in AMCA 501 apply to this Section unless otherwise defined in this Section or in referenced standards.

B. Horizontal Louver: Louver with horizontal blades; i.e., the axes of the blades are horizontal.

C. Storm-Resistant Louver: Louver that provides specified wind-driven rain performance, as determined by testing according to AMCA 550.

D. Missile Impact-Resistant Louver: Louver that provides specified missile impact performance, as determined by testing according to AMCA 540.

1.4 PERFORMANCE REQUIREMENTS
A. Structural Performance: Louvers shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of louver components, noise or metal fatigue caused by louver blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.

 1. WindLoads: Determine loads based on pressures as indicated on Drawings.

B. Louver Performance Ratings: Provide louvers complying with requirements specified, as demonstrated by testing manufacturer's stock units identical to those provided, except for length and width according to AMCA 550 and 540.

1.5 ACTION SUBMITTALS
A. Product Data: For each type of product indicated.
Section 233900 - LOUVERS AND VENTS (continued)

1. For louvers specified to bear AMCA seal, include printed catalog pages showing specified models with appropriate AMCA Certified Ratings Seals.

B. Shop Drawings: For louvers and accessories. Include plans, elevations, sections, details, and attachments to other work. Show frame profiles and blade profiles, angles, and spacing.

1. Show weep paths, gaskets, flashing, sealant, and other means of preventing water intrusion.
2. Show mullion profiles and locations.

1.6 INFORMATIONAL SUBMITTALS

A. Product Test Reports: Based on evaluation of comprehensive tests performed according to AMCA 550 and 540 by a qualified testing agency or by manufacturer and witnessed by a qualified testing agency, for each type of louver and showing compliance with performance requirements specified.

1.7 QUALITY ASSURANCE

A. Source Limitations: Obtain louvers and vents from single source from a single manufacturer where indicated to be of same type, design, or factory-applied color finish.

B. Welding: Qualify procedures and personnel according to the following:

1. AWS D1.2/D1.2M, "Structural Welding Code - Aluminum."
2. AWS D1.3, "Structural Welding Code - Sheet Steel."
3. AWS D1.6, "Structural Welding Code - Stainless Steel."

D. UL and NEMA Compliance: Provide motors and related components for motor-operated louvers that are listed and labeled by UL and comply with applicable NEMA standards.

1.8 PROJECT CONDITIONS

A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Aluminum Extrusions: ASTM B 221 (ASTM B 221M), Alloy 6063-T5, T-52, or T6.

B. Aluminum Sheet: ASTM B 209 (ASTM B 209M), Alloy 3003 or 5005 with temper as required for forming, or as otherwise recommended by metal producer for required finish.
Section 233900 - LOUVERS AND VENTS (continued)

D. Fasteners: Use types and sizes to suit unit installation conditions.
 1. Use Phillips flat-head screws for exposed fasteners unless otherwise indicated.
 2. For fastening aluminum, use aluminum or 300 series stainless-steel fasteners.
 3. For fastening galvanized steel, use hot-dip-galvanized steel or 300 series stainless-steel fasteners.
 4. For color-finished louvers, use fasteners with heads that match color of louvers.

E. Post installed Fasteners for Concrete and Masonry: Torque-controlled expansion anchors, made from stainless-steel components, with capability to sustain, without failure, a load equal to 4 times the loads imposed, for concrete, or 6 times the load imposed, for masonry, as determined by testing per ASTM E 488, conducted by a qualified independent testing agency.

F. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187.

2.2 FABRICATION, GENERAL

A. Assemble louvers in factory to minimize field splicing and assembly. Disassemble units as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.

B. Vertical Assemblies: Where height of louver units exceeds fabrication and handling limitations, fabricate units to permit field-bolted assembly with close-fitting joints in jambs and mullions, reinforced with splice plates.
 1. Continuous Vertical Assemblies: Fabricate units without interrupting blade-spacing pattern unless horizontal mullions are indicated.

C. Maintain equal louver blade spacing, including separation between blades and frames at head and sill, to produce uniform appearance.

D. Fabricate frames, including integral sills, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.
 1. Frame Type: Exterior flange unless otherwise indicated.

E. Include supports, anchorages, and accessories required for complete assembly.

F. Provide vertical mullions of type and at spacings indicated, but not more than recommended by manufacturer, or 72 inches (1830 mm) o.c., whichever is less.
 1. Exposed Mullions: Where indicated, provide units with exposed mullions of same width and depth as louver frame. Where length of louver exceeds fabrication and handling limitations, provide interlocking split mullions designed to permit expansion and contraction.

G. Provide extended sills for recessed louvers.
Section 233900 - LOUVERS AND VENTS (continued)

H. Join frame members to each other and to fixed louver blades with fillet welds, threaded fasteners, or both, as standard with louver manufacturer unless otherwise indicated or size of louver assembly makes bolted connections between frame members necessary.

2.3 FIXED, EXTRUDED-ALUMINUM LOUVERS

A. Vertical Storm-Resistant Louver:

1. Basis-of-Design Product: Subject to compliance with requirements, provide Ruskin Company; EME6325D or comparable product by one of the following:

 a. Greenheck Fan Corporation.

2. Louver Depth: 6 inches (150 mm).
3. Frame and Blade Nominal Thickness: Not less than 0.080 inch (2.03 mm)
4. Louver Performance Ratings:
 a. Free Area: Not less than 6.0 sq. ft. (0.56 sq. m) for 48-inch- (1220-mm-) wide by 48-inch- (1220-mm-) high louver.
 b. Air Performance: Not more than 0.10-inch wg (25-Pa) static pressure drop at 800-fpm (4.1-m/s) free-area exhaust velocity.
 c. Wind-Driven Rain Performance: Not less than 99 percent effectiveness when subjected to a rainfall rate of 8 inches (200 mm) per hour and a wind speed of 50 mph (22.4 m/s) at a core-area intake velocity of 900 fpm (24.5 m/s).
5. AMCA Seal: Mark units with AMCA 550 and 540 Certified Ratings Seal.
6.

2.4 FINISHES, GENERAL.

A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.

2.5 ALUMINUM FINISHES

A. Finish louvers after assembly.

B. High-Performance Organic Finish: 3 -coat fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent PVDF resin by weight in both color coat and clear topcoat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

1. Color and Gloss: As selected by Architect from manufacturer's full range.
Section 233900 - LOUVERS AND VENTS (continued)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and openings, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance.

B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Coordinate setting drawings, diagrams, templates, instructions, and directions for installation of anchorage that are to be embedded in concrete or masonry construction. Coordinate delivery of such items to Project site.

3.3 INSTALLATION

A. Locate and place louvers and vents level, plumb, and at indicated alignment with adjacent work.

B. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.

C. Form closely fitted joints with exposed connections accurately located and secured.

D. Provide perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.

E. Repair finishes damaged by cutting, welding, soldering, and grinding. Restore finishes so no evidence remains of corrective work. Return items that cannot be refinished in the field to the factory, make required alterations, and refinish entire unit or provide new units.

F. Protect unpainted galvanized and nonferrous-metal surfaces that will be in contact with concrete, masonry, or dissimilar metals from corrosion and galvanic action by applying a heavy coating of bituminous paint or by separating surfaces with waterproof gaskets or nonmetallic flashing.

G. Install concealed gaskets, flashings, joint fillers, and insulation as louver installation progresses, where weathertight louver joints are required. Comply with Section 079200 "Joint Sealants" for sealants applied during louver installation.

3.4 ADJUSTING AND CLEANING

A. Test operation of adjustable louvers and adjust as needed to produce fully functioning units that comply with requirements.

B. Clean exposed surfaces of louvers and vents that are not protected by temporary covering, to remove fingerprints and soil during construction period. Do not let soil accumulate during construction period.
Section 233900 - LOUVERS AND VENTS (continued)

C. Before final inspection, clean exposed surfaces with water and a mild soap or detergent not harmful to finishes. Thoroughly rinse surfaces and dry.

D. Restore louvers and vents damaged during installation and construction so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units.

1. Touch up minor abrasions in finishes with air-dried coating that matches color and gloss of, and is compatible with, factory-applied finish coating.

END OF SECTION 233900
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Pleated panel filters.
 2. Filter gages.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include dimensions; operating characteristics; required clearances and access; rated flow capacity, including initial and final pressure drop at rated airflow; efficiency and test method; fire classification; furnished specialties; and accessories for each model indicated.

B. Shop Drawings: For air filters. Include plans, elevations, sections, details, and attachments to other work.
 1. Show filter rack assembly, dimensions, materials, and methods of assembly of components.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Provide one complete set(s) of filters for each filter bank.

1.5 QUALITY ASSURANCE

A. ASHRAE Compliance:
 1. Comply with applicable requirements in ASHRAE 62.1, Section 4 - "Outdoor Air Quality"; Section 5 - "Systems and Equipment"; and Section 7 - "Construction and Startup."
 2. Comply with ASHRAE 52.1 for arrestance and ASHRAE 52.2 for MERV for methods of testing and rating air-filter units.

B. Comply with NFPA 90A and NFPA 90B.
Section 234100 - PARTICULATE AIR FILTRATION (continued)

PART 2 - PRODUCTS

2.1 PLEATED PANEL FILTERS

A. Description: Factory-fabricated, self-supported, extended-surface, pleated, panel-type, disposable air filters with holding frames.

1. Basis-of-Design Product: Subject to compliance with requirements, provide Camfil Farr; AP-Thirteen or comparable product by one of the following:
 a. AAF International.
 b. Airguard.
 c. Camfil Farr.
 d. Flanders-Precisionaire.
 e. Purafl, Inc.

B. Filter Unit Class: UL 900, Class 2.

C. Media: Interlaced glass or synthetic fibers coated with nonflammable adhesive.

1. Adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
3. Media shall be coated with an antimicrobial agent.
4. Separators shall be bonded to the media to maintain pleat configuration.
5. Welded wire grid shall be on downstream side to maintain pleat.
6. Media shall be bonded to frame to prevent air bypass.
7. Support members on upstream and downstream sides to maintain pleat spacing.

D. Filter-Media Frame: Cardboard frame with perforated metal retainer sealed or bonded to the media.

E. Mounting Frames: Welded galvanized steel, with gaskets and fasteners; suitable for bolting together into built-up filter banks.

F. Capacities and Characteristics:
 1. Thickness or Depth: 2 inches (50 mm) or 4 inches (100 mm) as indicated.
 2. Maximum or Rated Face Velocity: 625 fpm (3.2 m/s).
 3. Efficiency: 90 percent on particles 20 micrometers and larger at 500 fpm (2.5 m/s).
 4. Initial Resistance: 0.25-inch wg (62 Pa) at 350 fpm (1.8 m/s).
 5. Recommended Final Resistance: 1.0 inches wg (249 Pa).
 6. MERV Rating: 13 when tested according to ASHRAE 52.2.

2.2 FILTER GAGES

A. Diaphragm-type gage with dial and pointer in metal case, vent valves, black figures on white background, and front recalibration adjustment.
Section 234100 - PARTICULATE AIR FILTRATION (continued)

1. Basis-of-Design Product: Subject to compliance with requirements, provide Dwyer Instruments, Inc.; Series 2000 or comparable product by one of the following:

 a. Airguard.

2. Diameter: 4-1/2 inches (115 mm).

3. Scale Range for Filter Media Having a Recommended Final Resistance of 1.0- to 2.0-Inch wg (250 to 500 Pa) or Less: 0- to 2.0-inch wg (0 to 500 Pa).

B. Accessories: Static-pressure tips, tubing, gage connections, and mounting bracket.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Position each filter unit with clearance for normal service and maintenance. Anchor filter holding frames to substrate.

B. Install filters in position to prevent passage of unfiltered air.

C. Install filter gage for each filter bank.

D. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing with new, clean filters.

E. Install filter-gage, static-pressure taps upstream and downstream from filters. Install filter gages on filter banks with separate static-pressure taps upstream and downstream from filters. Mount filter gages on outside of filter housing or filter plenum in an accessible position. Adjust and level inclined gages.

F. Coordinate filter installations with duct and air-handling-unit installations.

3.2 CLEANING

A. After completing system installation and testing, adjusting, and balancing of air-handling and air-distribution systems, clean filter housings and install new filter media.

END OF SECTION 234100
Section 234200 - GAS-PHASE AIR FILTRATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Activated-carbon

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include dimensions; operating characteristics; required clearances and access; rated flow capacity, including initial and final pressure drop at rated airflow; efficiency and test method; fire classification; furnished specialties; and accessories for each model indicated.
 1.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of filter and rack to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Provide one complete set of filters for each filter or filter bank.

1.7 QUALITY ASSURANCE

A. ASHRAE Compliance:
 1. Finish of Interior Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2004.
Section 234200 - GAS-PHASE AIR FILTRATION (continued)

B. Comply with NFPA 90A and NFPA 90B.

PART 2 - PRODUCTS

2.1 ACTIVATED-CARBON

A. Description: Pleated, activated carbon filled nonwoven media

1. Provide Flanders; FCP Carbon Pleat

B. Media-Holding Panels: 2-inch (50 mm) thick, moisture resistant beverage board frame.

C. Media: Polyester Carbon; Carbon mass 14 oz. per square yard

D. Capacities and Characteristics:
 1. Depth: 2 inches.
 2. Maximum or Rated Face Velocity: 500 fpm (2.5 m/s).
 3. Initial Resistance: 0.550-inch wg

PART 3 - EXECUTION

3.1 INSTALLATION

A. Position each filter unit with clearance for normal service and maintenance. Anchor filter holding frames to substrate.

B. Install filters in position to prevent passage of unfiltered air.

C. Install filter gage for each filter bank.

D. Do not operate fan system until particulate filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing with new, clean filters.

E. Do not install gas-phase filters until fan system is clean and there is no risk of construction debris loading the filter.

F. Install filter-gage, static-pressure taps upstream and downstream from filters. Install filter gages on filter banks with separate static-pressure taps upstream and downstream of filters. Mount filter gages on outside of filter housing or filter plenum in an accessible position. Adjust and level inclined gages.

G. Coordinate filter installations with duct and air-handling unit installations.

3.2 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installation, including connections.
Section 234200 - GAS-PHASE AIR FILTRATION (continued)

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations including connections, and to assist in testing.

C. Tests and Inspections:
 1. Test for leakage of unfiltered air while system is operating.

D. Air filter will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

3.3 CLEANING

A. After completing system installation and testing, adjusting, and balancing air-handling and air-distribution systems, clean filter housings and install new particulate filter media.

END OF SECTION 234200
This Page Left Intentionally Blank
Section 235533.16 - GAS-FIRED UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes gas-fired unit heaters.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of gas-fired unit heater.
 1. Include rated capacities, operating characteristics, and accessories.

B. Shop Drawings: For gas-fired unit heaters. Include plans, elevations, sections, and attachment details.
 1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

B. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For gas-fired unit heaters to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fan Belts: One for each belt-driven fan size.
Section 235533.16 - GAS-FIRED UNIT HEATERS (continued)

1.7 QUALITY ASSURANCE

A. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 - "Heating, Ventilating, and Air-Conditioning."

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace heat exchanger of gas-fired unit heater that fails in materials or workmanship within specified warranty period.

1. Warranty Period: One year from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Renzor
2. Modine
3. Trane

2.2 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 MANUFACTURED UNITS

A. Description: Factory assembled, piped, and wired, and complying with ANSI Z83.8/CSA 2.6.

B. Gas Type: Design burner for natural gas having characteristics same as those of gas available at Project site.

C. Type of Venting: Indoor, separated combustion, power vented.

D. Housing: Steel, with integral draft hood and inserts for suspension mounting rods.

1. External Casings and Cabinets: Powder coating over corrosion-resistant-treated surface.

2. Discharge Louvers: Independently adjustable, horizontal blades.

E. Accessories:

1. Four-point suspension kit.
Section 235533.16 - GAS-FIRED UNIT HEATERS (continued)

2. Concentric, Terminal Vent Assembly: Combined combustion-air inlet and power-vent outlet with wall or roof caps. Include adapter assembly for connection to inlet and outlet pipes, and flashing for wall or roof penetration.

H. Propeller Unit Fan:
 1. Aluminum propeller blades riveted to heavy-gage steel spider bolted to cast-iron hub, dynamically balanced, and resiliently mounted.
 2. Fan-Blade Guard: Galvanized steel, complying with OSHA specifications, removable for maintenance.

I. Motors:
 1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 2. Enclosure Materials: Rolled steel.

J. Controls: Regulated redundant gas valve containing pilot solenoid valve, electric gas valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body.
 1. Gas Control Valve: Two stage.
 2. Ignition: Electronically controlled electric spark with flame sensor.
 3. Fan Thermal Switch: Operates fan on heat-exchanger temperature.
 4. Control transformer.
 5. High Limit: Thermal switch or fuse to stop burner.
 6. Wall-Mounted Thermostat:
 a. Two stage.
 b. Fan on-off-automatic switch.
 c. 24-V ac.
 d. 50 to 90 deg F (10 to 32 deg C) operating range.

K. Electrical Connection: Factory wire motors and controls for a single electrical connection.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install and connect gas-fired unit heaters and associated gas and vent features and systems according to NFPA 54, applicable local codes and regulations, and manufacturer's written instructions.
Section 235533.16 - GAS-FIRED UNIT HEATERS (continued)

3.2 EQUIPMENT MOUNTING

A. Suspended Units: Suspend from substrate using threaded rods, spring hangers, and building attachments. Secure rods to unit hanger attachments. Adjust hangers so unit is level and plumb.

3.3 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where installing piping adjacent to gas-fired unit heater, allow space for service and maintenance.

C. Gas Piping: Comply with Section 231123 "Facility Natural-Gas Piping." Connect gas piping to gas train inlet; provide union with enough clearance for burner removal and service.

D. Vent Connections: Comply with Section 235123 "Gas Vents."

E. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

F. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
2. Verify bearing lubrication.
3. Verify proper motor rotation.
4. Test Reports: Prepare a written report to record the following:
 a. Test procedures used.
 b. Test results that comply with requirements.
 c. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

C. Gas-fired unit heater will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.
Section 235533.16 - GAS-FIRED UNIT HEATERS (continued)

3.5 ADJUSTING

A. Adjust initial temperature and humidity set points.

B. Adjust burner and other unit components for optimum heating performance and efficiency.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain gas-fired unit heaters.

END OF SECTION 235533.16
This Page Left Intentionally Blank
Section 237433 - DEDICATED OUTDOOR-AIR UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
A. Section includes factory-packaged units capable of supplying up to 100 percent outdoor air and providing cooling.

1.3 ACTION SUBMITTALS
A. Product Data: For each type of product. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.4 INFORMATIONAL SUBMITTALS
A. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS
A. Operation and Maintenance Data: For units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS
A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Fan Belts: One set for each belt-driven fan.
 2. Filters: One set for each unit.

1.7 WARRANTY
A. Special Warranty: Manufacturer agrees to replace components of units that fail in materials or workmanship within specified warranty period.
 1. Warranty Period for Compressors: Five years from date of Substantial Completion.
Section 237433 - DEDICATED OUTDOOR-AIR UNITS (continued)

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. AAON
2. Addison
3. Dectron
4. Daikin
5. Trane

2.2 PERFORMANCE REQUIREMENTS

A. General Fabrication Requirements: Comply with requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment," and Section 7 - "Construction and System Start-up."

1. that is normal to the wind direction and 45 degrees either side of normal.

B. Cabinet Thermal Performance:

1. Maximum Overall U-Value: Comply with requirements in ASHRAE/IESNA 90.1.
2. Include effects of metal-to-metal contact and thermal bridges in the calculations.

C. Cabinet Surface Condensation:

1. Cabinet shall have additional insulation and vapor seals if required to prevent condensation on the interior and exterior of the cabinet.
2. Portions of cabinet located downstream from the cooling coil shall have a thermal break at each thermal bridge between the exterior and interior casing to prevent condensation from occurring on the interior and exterior surfaces. The thermal break shall not compromise the structural integrity of the cabinet.

D. Maximum Cabinet Leakage: 1 percent of the total supply-air flow at a pressure rating equal to the fan shut-off pressure.

E. Cabinet Deflection Performance:

1. Walls and roof deflection shall be within 1/200 of the span at the design working pressure equal to the fan shut-off pressure. Deflection limits shall be measured at any point on the surface.
2. Floor deflections shall be within 1/240 of the span considering the worst-case condition caused by the following:

 a. Service personnel.
 b. Internal components.
 c. Design working pressure defined for the walls and roof.

F. Electrical components, devices, and accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2.3 CABINET

A. Construction: double wall.

B. Exterior Casing Material: Galvanized steel with paint finish.

C. Interior Casing Material: Galvanized steel.

E. Base Rails: Galvanized-steel rails for mounting on roof curb or pad as indicated.

F. Access for Inspection, Cleaning, and Maintenance: Comply with requirements in ASHRAE 62.1.

1. Service Doors: Hinged access doors with gaskets. Material and construction of doors shall match material and construction of cabinet in which doors are installed.

G. Roof: Standing seam or membrane; sloped to drain water.

H. Floor: Reinforced, metal surface; reinforced to limit deflection when walked on by service personnel. Insulation shall be below metal walking surface.

I. Casing Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 1. Materials: ASTM C 1071, Type I.
 2. Thickness: 2 inches (50 m), R-value, 6.5.
 3. Liner materials shall have air-stream surface coated with an erosion- and temperature-resistant coating or faced with a plain or coated fibrous mat or fabric.
 4. Liner Adhesive: Comply with ASTM C 916, Type I.

J. Condensate Drain Pans:

1. Shape: Rectangular, with 2 percent slope in at least two planes to direct water toward drain connection.
2. Size: Large enough to collect condensate from cooling coils including coil piping connections, coil headers, and return bends.

 a. Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 b. Depth: A minimum of 2 inches (50 mm) deep.
3. Configuration: Double wall, with space between walls filled with foam insulation and moisture-tight seal.
5. Drain Connection:

 a. Located on one end of pan, at lowest point of pan.
 b. Terminated with threaded nipple.

6. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.
K. Surfaces in Contact with Airstream: Comply with requirements in ASHRAE 62.1 for resistance to mold and erosion.

2.4 SUPPLY FAN

A. Plenum Fan Type: Single width, non-overloading, with backward-inclined or airfoil blades.
 1. Fan Wheel Material: Aluminum; attached directly to motor shaft.
 5. Fan Balance: Precision balance fan below 0.08 inch/s (2.0 mm/s) at design speed with filter in.

B. Fan Array: Multiple direct drive plenum fans spaced to provide a uniform velocity profile across the airway tunnel cross section. The velocity profile shall not exceed the specified cooling coil and/or filter bank face velocity 12 inches (300 mm) from the intake side or 48 inches (1200 mm) from the discharge side of the plenum wall.
 1. Each fan/motor assembly shall be removable through a minimum 30 inches (750 mm) wide access door located on the inlet side of the fan array.
 2. Fans: Direct driven, arrangement 2 plenum fans constructed per AMCA requirements for the duty specified, (Class II).
 a. Basis-of-Design Product: Subject to compliance with requirements, provide Ruskin Company; BD6 or comparable product by one of the following:
 1) Greenheck Fan Corporation.
 2) Nailor Industries Inc.
 b. Frame: 2-1/4 inch x minimum 0.125 inch (57 x minimum 3.2 mm) 6063-T5 extruded aluminum channel with galvanized steel braces at mitered corners.
 c. Blades: Multiple single-piece blades, end pivoted, maximum 6-inch (150-mm) width, 0.070-inch- (1.8-mm-) thick aluminum sheet with sealed edges.
 d. Bearings: Corrosion-resistant, long-life, synthetic, formed as single piece with axles.
 e. Blade Seals: Extruded vinyl, mechanically attached to blade edge.
 f. Linkage: Minimum 1/2 inch (13 mm) aluminum tie bar with stainless steel pivot pins mounted on blades.

C. Fan Shaft Bearings:
 1. Grease-Lubricated Bearings: Self-aligning, pillow-block-type, ball or roller bearings with adapter mount and two-piece, cast-iron housing with grease lines extended to outside unit.

D. Internal Vibration Isolation: Fans shall be factory mounted with manufacturer's standard restrained spring vibration isolation mounting devices having a minimum static deflection of 2 inches (50 mm).
Section 237433 - DEDICATED OUTDOOR-AIR UNITS (continued)

E. Motor: Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

1. Enclosure Type: Totally enclosed, fan cooled.
2. NEMA Premium (TM) efficient motors as defined in NEMA MG 1.
3. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.5 COOLING COILS

A. Capacity Ratings: Comply with ASHRAE 33 and ARI 410.

B. Coil Casing Material: Manufacturer's standard material.

C. Tube Material: Copper.

D. Tube Header Material: Manufacturer's standard material.

E. Fin Material: Aluminum.

F. Fin and Tube Joints: Mechanical bond.

G. Leak Test: Coils shall be leak tested with air underwater.

H. Refrigerant Coil Capacity Reduction: Circuit coils for interleaved control.

I. Refrigerant Coil Suction and Distributor Header Materials: Seamless copper tube with brazed joints.

2.6 REFRIGERATION SYSTEM

B. Refrigerant Charge: Factory charged with refrigerant and filled with oil.

C. Compressors: Scroll compressors with integral vibration isolators, internal overcurrent and overtemperature protection, internal pressure relief, and crankcase heater.

D. Refrigerant: R-410A.

1. Classified as Safety Group A1 according to ASHRAE 34.
2. Provide unit with operating charge of refrigerant.

E. Refrigeration System Specialties:

1. Expansion valve with replaceable thermostatic element.
2. Refrigerant dryer.
3. High-pressure switch.
4. Low-pressure switch.
Section 237433 - DEDICATED OUTDOOR-AIR UNITS (continued)

5. Thermostat for coil freeze-up protection during low ambient temperature operation or loss of air.
6. Brass service valves installed in discharge and liquid lines.
7. Liquid line sight glass.

F. Capacity Control:

1. Modulating hot gas reheat shall be provided on the lead refrigeration circuit. Refrigeration circuit shall be provided with interlaced hot gas reheat coil, modulating valves, electronic controller, supply air temperature sensor and a dehumidification control signal terminal which allow the unit to have a dehumidification mode of operation, which includes supply air temperature control to prevent supply air temperature swings and overcooling of the space. Modulating reheat valves shall be factory. Reheat line connections shall be labeled, extend beyond the unit casing and be located near the suction and liquid line connections for ease of field connection. Connections shall be factory sealed with a grommet on the exterior of the unit casing to minimize air leakage.
2. Lead refrigerant circuit shall be provided with a variable speed compressor to prevent excessive cycling and more precise capacity control.

G. Refrigerant condenser and reheat condenser coils:

2. Tube Material: Copper.
3. Fin Material: Aluminum.
5. Leak Test: Coils shall be leak tested with air underwater.

H. Condenser Fan Assembly:

1. Fans: Direct-drive propeller type with statically and dynamically balanced fan blades.
2. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
3. Fan Safety Guards: Steel with corrosion-resistant coating.

I. Safety Controls:

1. Compressor motor and condenser coil fan motor low ambient lockout.
2. Overcurrent protection for compressor motor.

2.7 ENERGY RECOVERY WATER COIL

A. Capacity Ratings: Comply with ASHRAE 33 and ARI 410.

B. Coil Casing Material: Stainless steel.
Section 237433 - DEDICATED OUTDOOR-AIR UNITS (continued)

C. Tube Material: Copper.
D. Tube Header Material: Manufacturer's standard material.
E. Fin Material: Aluminum.
F. Fin and Tube Joints: Mechanical bond.
G. Leak Test: Coils shall be leak tested with air underwater.

2.8 OUTDOOR-AIR INTAKE HOOD

A. Type: Manufacturer's standard hood or louver.
B. Materials: Match cabinet.
C. Bird Screen: Comply with requirements in ASHRAE 62.1.
D. Configuration: Designed to inhibit wind-driven rain and snow from entering unit.

2.9 FILTERS

A. Filters are specified in Section 234100 "Particulate Air Filtration."

2.10 ELECTRICAL POWER CONNECTIONS

A. General Electrical Power Connection Requirements: Factory-installed and -wired switches, motor controllers, transformers, and other necessary electrical devices shall provide a single-point field power connection to unit.
B. Enclosure: NEMA 250, Type 3R, mounted in unit with hinged access door in unit cabinet having a lock and key or padlock and key,
C. Wiring: Numbered and color-coded to match wiring diagram.
D. Wiring Location: Install factory wiring outside an enclosure in a raceway.
E. Power Interface: Field power interface shall be to NEMA KS 1, heavy-duty, nonfusible disconnect switch.
F. Factory Wiring: Branch power circuit to each motor and to controls with one of the following disconnecting means:
 1. NEMA KS 1, heavy-duty, fusible switch with rejection-type fuse clips rated for fuses. Select and size fuses to provide Type 2 protection according to IEC 60947-4-1.
 2. NEMA KS 1, heavy-duty, nonfusible switch.
 3. UL 489, motor-circuit protector (circuit breaker) with field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
Section 237433 - DEDICATED OUTDOOR-AIR UNITS (continued)

G. Factory-Mounted, Overcurrent-Protection Service: For each motor.

H. Transformer: Factory mounted with primary and secondary fuses and sized with enough capacity to operate electrical load plus spare capacity.

I. Controls: Factory wire unit-mounted controls where indicated.

J. Lights: Factory wire unit-mounted lights.

K. Receptacle: Factory wire unit-mounted, ground fault interrupt (GFI) duplex receptacle.

L. Control Relays: Auxiliary and adjustable time-delay relays.

2.11 CONTROLS

A. Control equipment and sequence of operation are specified in Section 230900 "Instrumentation and control for HVAC."

B. Interface with DDC System for HVAC: Factory-installed hardware to enable the DDC system for HVAC to monitor and control the unit.

2.12 ACCESSORIES

A. Duplex Receptacle: Factory mounted in unit supply-fan section, with 20 amp 120 V GFI duplex receptacle and weatherproof cover.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of connections before equipment installation.

C. Examine equipment supports for suitable conditions where units will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with manufacturer’s rigging and installation instructions for unloading units and moving to final locations.

B. Equipment Mounting:
Section 237433 - DEDICATED OUTDOOR-AIR UNITS (continued)

1. Install air units on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Section 033053.1 "Miscellaneous Cast-in-Place Concrete for Mechanical and Electrical Systems."

2. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."

C. Install wall- and duct-mounted sensors furnished by manufacturer for field installation. Install control wiring and make final connections to control devices and unit control panel.

D. Install separate devices furnished by manufacturer and not factory installed.

E. Install new filters at completion of equipment installation and before testing, adjusting, and balancing.

3.3 CONNECTIONS

A. Where installing piping adjacent to units, allow space for service and maintenance.

B. Duct Connections:

1. Comply with requirements in Section 233113 "Metal Ducts."

2. Drawings indicate the general arrangement of ducts.

3. Connect ducts to units with flexible duct connectors. Comply with requirements for flexible duct connectors in Section 233300 "Air Duct Accessories."

C. Electrical Connections: Comply with requirements for power wiring, switches, and motor controls in electrical Sections.

1. Install electrical devices furnished by unit manufacturer but not factory mounted.

3.4 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer’s written instructions.

2. Inspect units for visible damage to furnace combustion chamber.

3. Perform the following operations for both minimum and maximum firing and adjust burner for peak efficiency:

 a. Measure combustion-air temperature at inlet to combustion chamber.

4. Inspect units for visible damage to refrigerant compressor, condenser and evaporator coils, and fans.

5. Start refrigeration system when outdoor-air temperature is within normal operating limits and measure and record the following:

 a. Cooling coil leaving-air, dry- and wet-bulb temperatures.
 b. Cooling coil entering-air, dry- and wet-bulb temperatures.
 c. Condenser coil entering-air dry-bulb temperature.
 d. Condenser coil leaving-air dry-bulb temperature.
Section 237433 - DEDICATED OUTDOOR-AIR UNITS (continued)

6. Simulate maximum cooling demand and inspect the following:
 a. Compressor refrigerant suction and hot-gas pressures.
 b. Short-circuiting of air through outside coil or from outside coil to outdoor-air intake.

7. Inspect casing insulation for integrity, moisture content, and adhesion.
8. Verify that clearances have been provided for servicing.
9. Verify that controls are connected and operable.
10. Verify that filters are installed.
11. Clean coils and inspect for construction debris.
12. Verify bearing lubrication.
13. Clean fans and inspect fan-wheel rotation for movement in correct direction without vibration and binding.
15. Inspect and record performance of interlocks and protective devices including response to smoke detectors by fan controls and fire alarm.
16. Operate unit for run-in period.
17. Calibrate controls.
18. Adjust and inspect high-temperature limits.
19. Inspect outdoor-air dampers for proper stroke.
20. Verify operational sequence of controls.
21. Measure and record the following airflows. Plot fan volumes on fan curve.
 a. Outdoor-air flow.

B. After startup, change filters, verify bearing lubrication, and adjust belt tension.

C. Remove and replace components that do not properly operate and repeat startup procedures as specified above.

D. Prepare written report of the results of startup services.

3.5 ADJUSTING

A. Adjust initial temperature and humidity set points.

B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 237433
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes split-system air-conditioning and heat-pump units consisting of separate evaporator-fan and compressor-condenser components.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.

B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 2. Wiring Diagrams: For power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

B. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Filters: One set(s) for each air-handling unit.
 2. Fan Belts: One set(s) for each air-handling unit fan.
Section 238126 - SPLIT-SYSTEM AIR-CONDITIONERS (continued)

1.7 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. ASHRAE Compliance:

1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."

C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.

1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork are specified in Section 033053.1 "Miscellaneous Cast-in-Place Concrete for Mechanical and Electrical Systems."

1.9 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of split-system air-conditioning units that fail in materials or workmanship within specified warranty period.

1. Warranty Period:

a. For Compressor: Five year(s) from date of Substantial Completion.
b. For Parts: One year(s) from date of Substantial Completion.
c. For Labor: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

2. Daikin Industries, Ltd.
3. Lennox International Inc.
4. Trane; a business of American Standard companies.
5. YORK; a Johnson Controls company.

2.2 INDOOR UNITS (5 TONS (18 kW) OR LESS)

A. Concealed Evaporator-Fan Components:
Section 238126 - SPLIT-SYSTEM AIR-CONDITIONERS (continued)

1. Chassis: Galvanized steel with flanged edges, removable panels for servicing, and insulation on back of panel.
2. Insulation: Faced, glass-fiber duct liner.
5. Fan: Forward-curved, double-width wheel of galvanized steel; directly connected to motor.
6. Fan Motors:
 a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 c. Wiring Terminations: Connect motor to chassis wiring with plug connection.
7. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
8. Filters: 1 inch (25 mm) filter rack.
9. Condensate Drain Pans:
 a. Fabricated with two percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and humidifiers, and to direct water toward drain connection.
 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 2) Depth: A minimum of 1 inch (25 mm) deep.
 c. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 1) Minimum Connection Size: NPS 1 (DN 25).
 d. Pan-Top Surface Coating: Asphaltic waterproofing compound.
 e. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

2.3 OUTDOOR UNITS (5 TONS (18 kW) OR LESS)

A. Air-Cooled, Compressor-Condenser Components:
1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
Section 238126 - SPLIT-SYSTEM AIR-CONDITIONERS (continued)

2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 a. Compressor Type: Scroll.
 b. Two-speed compressor motor with manual-reset high-pressure switch and automatic-reset low-pressure switch.
 c. Refrigerant Charge: R-407C or R-410A.
 d. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 210/240.

4. Fan: Aluminum-propeller type, directly connected to motor.
5. Motor: Permanently lubricated, with integral thermal-overload protection.

2.4 ACCESSORIES

A. Control equipment and sequence of operation are specified in Section 230900 "Instrumentation and Control for HVAC" and Section 230993 "Sequence and Operations for HVAC Controls."

B. Thermostat: Low voltage with subbase to control compressor and evaporator fan.
 1. Compressor time delay.
 2. 24-hour time control of system stop and start.
 3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 4. Fan-speed selection including auto setting.

C. Automatic-reset timer to prevent rapid cycling of compressor.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install units level and plumb.

B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.

C. Install ground-mounted, compressor-condenser components on 4-inch- (100-mm-) thick, reinforced concrete base that is 4 inches (100 mm) larger, on each side, than unit. Concrete, reinforcement, and formwork are specified in Section 033053.1 "Miscellaneous Cast-in-Place Concrete for Mechanical and Electrical Systems." Coordinate anchor installation with concrete base.
Section 238126 - SPLIT-SYSTEM AIR-CONDITIONERS (continued)

3.2 CONNECTIONS

A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.

C. Duct Connections: Duct installation requirements are specified in Section 233113 "Metal Ducts." Drawings indicate the general arrangement of ducts. Connect supply and return ducts to split-system air-conditioning units with flexible duct connectors. Flexible duct connectors are specified in Section 233300 "Air Duct Accessories."

3.3 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:

 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning units and retest as specified above.

D. Prepare test and inspection reports.

3.4 STARTUP SERVICE

A. Perform startup service.

 1. Complete installation and startup checks according to manufacturer's written instructions.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 238126
This Page Left Intentionally Blank
Section 260100 – GENERAL PROVISIONS FOR ELECTRICAL

PART 1 - GENERAL

1.1 GENERAL REQUIREMENTS

A. General Conditions, Supplementary Conditions, applicable provisions of Division 01, General Requirements, and other provisions and requirements of the contract documents apply to work of Division 26, Electrical.

B. Applicable provisions of this section apply to all sections of Division 26, Electrical.

C. All Division 26 sections shall be considered to be integrated with each other.

D. Investigate all alternates, addenda and allowances as they relate to work of Division 26.

E. Approval of the subcontractors will be based on experience, qualifications and financial responsibility.

1.2 QUALITY ASSURANCE

A. General:

1. It is the intent of the drawings and specifications to obtain a complete, operable and satisfactory installation.
2. All materials shall be new, be properly labeled and/or identified and be in full compliance with the contract documents.
3. All work shall comply with applicable Codes and Standards.
4. Manufacturer's model names and numbers used in this Division of the specifications are subject to change per manufacturer's action. Contractor shall therefore verify them with manufacturer's representative before ordering any product or equipment.

B. Manufacturers: Firms regularly engaged in manufacture of general use equipment with characteristics, duct sizes and capacities required, whose products have been in satisfactory use in similar service for not less than 5 years.

C. Installer: A firm with at least 3 years of successful installation experience on projects with installation work similar to that required for the project.

1.3 CODE REQUIREMENTS

A. Perform work in accordance with applicable statutes, ordinances, codes, and regulations of governmental authorities having jurisdiction. Applicable codes include the following:

1. NEC
2. Florida Building Codes
3. NFPA 72

B. Resolve, in writing, any code violation discovered in contract documents with the Engineer
Section 260100 – GENERAL PROVISIONS FOR ELECTRICAL (continued)

prior to bidding. After award of the contract, make any correction or addition necessary for compliance with applicable codes at no additional cost to Owner.

C. Conflicts: Where there is a conflict between the contract document and an applicable "CODE", the "CODE" shall govern except where the requirements of the contract documents are more stringent; where there is a conflict between the contract drawings and the contract specifications, the most stringent shall govern.

D. The installer shall include in the work, without extra cost to the Owner, any labor, materials, services, apparatus and drawings required to comply with all applicable laws, ordinances, rules and regulations.

1.4 PERMITS FEES AND INSPECTIONS

A. Obtain and pay for all permits, fees, tap fees, connection charges, demand charges, systems charges, impact fees and inspections.

B. Deliver all certificates of inspection issued by authorities having jurisdiction to the Engineer.

1.5 REFERENCE SPECIFICATIONS AND STANDARDS

A. Materials which are specified by reference to Federal Specifications; ASTM, ASME, ANSI, or AWWA Specifications; Federal Standards, or other standard specifications must comply with latest editions, revisions, amendments or supplements in effect on date bids are received. Requirements in reference specifications and standards are minimum for all equipment, material and work. In instances where capacities, size or other feature of equipment, devices or materials exceed these minimums, meet listed or shown capacities.

B. Whenever a reference is made to a standard, installation and materials shall comply with the latest published edition of the standard at the time project is bid unless otherwise specified herein.

1.6 CONTRACT DOCUMENTS

A. Examine all drawings and specifications carefully before submitting a bid. If discrepancies or conflicts occur between drawings, or between drawings and specifications, notify the Engineer in writing prior to bid date; however, the most stringent requirement shall govern.

B. For purposes of clearness and legibility, drawings are essentially diagrammatic and, although size and location of equipment are drawn to scale wherever possible, Contractor shall make use of all data in all of the contract documents and shall verify this information at the site.

C. The drawings indicate required size and points of termination of pipes and conduits and suggest proper routes to conform to structure, avoid obstructions and preserve clearances. However, it is not intended that drawings indicate all necessary offsets, and it shall be the responsibility of the Contractor to make the installation in such a manner as to conform to structure, avoid obstructions, preserve headroom and keep openings and passageways clear, without further instructions or cost to the Owner.
Section 260100 – GENERAL PROVISIONS FOR ELECTRICAL (continued)

D. Furnish, install and/or connect with appropriate services all items shown on any drawing without additional compensation.

E. Consider the terms "provide" and "install" as synonymous with "furnish and install".

F. Any and all questions about a subcontractor's scope of work responsibility shall be addressed to and answered by the Construction Manager.

G. Questions about Construction Documents: Any and all questions shall be submitted through the proper channels IN WRITING and, in turn, shall be answered by the Engineer in writing. All telephone conversations shall be considered unofficial and, as such, shall not be considered official or binding responses to Contractor's questions.

H. Drawings, specifications or other documents issued by the Engineer in electronic format and/or electronic media are provided for convenience only and are not intended for use as Contract Documents. The electronic files are provided merely as a convenience to the Recipient. The electronic files do not replace or supplement the paper copies of any drawings, specifications, or other documents included in the Contract Documents for use on the project. The Engineer makes no representation, warranty or guarantee that electronic files: (1) are suitable for any other usage or purpose, or (2) have any particular, durability, or (3) will not damage or impair the Recipient's computer or software, or (4) contain no errors or mechanical flaws or other discrepancies that may render them unsuitable for the purpose intended by the Recipient. Due to the unsecured nature of the electronic files and the inability of Engineer or the Recipient to establish controls over their use, the Engineer assumes no responsibility for any consequences arising out of the use of the data. It is the sole responsibility of the Recipient to check the validity of all information contained therein. The Recipient shall at all times refer to the signed and sealed drawings, specification or other documents for the project during all phases of the project. The Recipient shall assume all risks and liabilities resulting from the use of the electronic files.

1.7 MATERIALS AND EQUIPMENT

A. Furnish new and unused materials and equipment manufactured in the U.S.A. Where two or more units of the same type or class of equipment are required provide units of a single manufacturer.

B. Only manufacturer's products specified hereinafter or listed in an addenda, prior to the acceptance of bids, shall be furnished and installed under this contract.

C. All products used in this project installation shall be new and currently under manufacture and shall have been applied in similar installations for a minimum of two years. This installation shall not be used as a test site for any new products unless explicitly approved by the Owner in writing. Spare parts shall be available for at least five years after completion of this contract.

D. All electrical materials and equipment shall be UL or ETL listed. CSA is not considered equivalent.
1.8 SUBSTITUTIONS AND PRIOR APPROVAL

A. Requests for substitutions shall be submitted to the Engineer's office at least ten (10) days prior to the date for receipt of bids. These requests will be reviewed by the Engineer and an addendum, listing acceptable manufacturers, shall be issued prior to receipt of bids. The listing of acceptable manufacturers only allows a manufacturer to bid the project with a product that meets the Engineer's specifications as interpreted by the Engineer. Said product shall be called an "approved equal" product. All information submitted shall contain information identical to shop drawing submittals and shall list any and all differences from the specified item. Failure to make this listing shall automatically disqualify the product submitted. Note: Should the Engineer not have an up-to-date copy of the manufacturer's general engineering catalog, an adequate evaluation of the requested substitution cannot be made in the allotted time and the product will not be considered.

B. Substitutions submitted after the prescribed time for prior approval will not be considered.

C. All substitutes or alternate manufacturers' products must meet detailed specifications, size and arrangement of equipment specified. Equipment must fit allocated space. Only products equal to that specified will be considered.

D. If the approved equal substitution contains differences or omissions not specifically called to the attention of the Engineer, those features shall be added to the substituted product at the Contractor's expense.

E. Non-corrosive materials shall be provided for the entirety of the project.

1.9 ADDITIONAL WORK

A. Design is based on equipment as described in the drawings and specifications. Any required changes in foundation bases, electrical requirements, wiring, conduit, connections, piping, controls, openings, etc., shall be paid for by this Contractor.

1.10 GUARANTEE

A. Guarantee work and equipment for one year from the date of final acceptance of the project, and during that period make good any faults or imperfections that may arise due to defects or omissions in materials or workmanship.

PART 2 - EXECUTION

2.1 WORKMANSHIP

A. Install materials and equipment in a professional manner. The Engineer may direct replacement of items which, in his opinion, do not present a professional appearance. Replace or reinstall items at the expense of the Contractor.
Section 260100 – GENERAL PROVISIONS FOR ELECTRICAL (continued)

2.2 SUPERVISION OF WORK
A. Perform all work under the direct supervision of an experienced, qualified superintendent.

2.3 CONNECTING TO WORK OF OTHERS
A. Examine all work installed by others where it applies to work of Division 26. Notify the Engineer if conditions exist which prevent satisfactory results. Start of work by the Contractor shall be construed as acceptance by him of all claims or questions as to suitability of the work of others to receive his work.

2.4 DAMAGE TO OTHER WORK AND PERSONNEL
A. Adequately protect work, equipment, fixtures, and materials. At work completion, all work must be clean and in good condition.
B. Carry insurance as prescribed by law and as required in this specification for protection of employees, other persons, materials and equipment on the building site.
C. Contractor shall pay for all damages caused by his personnel, including his subcontractors.

2.5 OBSTRUCTIONS
A. The drawings indicate certain information pertaining to surface and subsurface obstructions which has been taken from available drawings. Such information is not guaranteed, however, as to accuracy of location or complete information.
B. Before any cutting or trenching operations are begun, verify with Owner's representative, utility companies, municipalities, and other interested parties that all available information has been provided. Verify locations given.
C. Should obstruction be encountered, whether shown or not, alter routing of new work, reroute existing lines, remove obstruction where permitted, or otherwise perform whatever work is necessary to satisfy the purpose of the new work and leave existing services and structures in a satisfactory and serviceable condition.
D. Assume total responsibility for and repair any damage to existing utilities or construction, whether or not such existing facilities are shown.

2.6 SPACE REQUIREMENTS
A. Consider space limitations imposed by contiguous work in selection and location of equipment and material. Do not provide equipment or material which is not suitable in this respect.

2.7 CUTTING AND PATCHING
A. Cut and patch all walls, partitions, floors, pits and chases in wood and masonry as indicated or
required by the contract documents or as directed by the Engineer.

B. Obtain approval of Engineer prior to cutting of steel, wood or other structural member.

C. Openings through concrete structures shall be "core bored"; where 3 or more openings penetrate in the same location the concrete may be sawed. All penetrations shall be re-sealed around pipes with "WATER-PLUG" by Thoro with top surface finished smooth.

2.8 REMOVAL OF RUBBISH

A. During construction keep the job site clean and remove all rubbish.

B. Upon completion of work leave the premises and work in a clean and acceptable condition. Remove all tools, scaffolding, materials and rubbish from the building and site. Clean all conduit chases. Remove all plaster, concrete, cement, etc. from exposed and concealed conduit, hangers and equipment prior to painting and/or concealment.

2.9 TESTS

A. Include all tests specified and/or required under laws, rules and regulations of all departments having jurisdiction. Tests shall also be performed as indicated herein and other sections of the specifications.

B. Correct defects disclosed by these tests without any additional cost to the Owner. Repeat tests on repaired or replaced work.

C. Maintain a log of all tests being conducted and have it available for review by the Engineer. Log to indicate date, type of tests, duration, and defects noted and when corrected.

D. Special tests on individual systems are specified under individual sections.

2.10 PROJECT RECORD DOCUMENTS

A. Preparation: Maintain at the job site a separate set of white prints of the contract drawings for the sole purpose of recording the "as-built" changes and diagrams of those portions of work in which actual construction is significantly at variance with the contract drawings. Mark the drawings with a No. B or softer pencil. Prepare, as the work progresses and upon completion of work, drawings clearly indicating locations of various conduit, panels, transformers, and other pertinent items, as installed. Include flow-line elevation of concrete encased duct. Record underground and under slab conduit installed, dimensioning exact location and elevation of such conduit.

B. Deliver: At conclusion of project, provide without cost to Owner as-built reproducibles of original electrical drawings on a set of hard line sheets and CAD file format drawings on CD. Delivery of as-built reproducibles is a condition of final acceptance. In addition to final as-built drawings, each month during construction deliver current marked-up prints to the Engineer.
Section 260100 – GENERAL PROVISIONS FOR ELECTRICAL (continued)

2.11 INSTRUCTIONS

A. Included within the scope of Division 26 is work where equipment and/or materials are furnished or required by this Division and installed under another Division (designated by the Contractor). It is the responsibility of the Contractor to see that all such work is included in the contract bid amount and completed during construction.

B. Each Contractor shall visit the building (site) and fully familiarize himself with existing conditions and account for these conditions in the submitted bids.

C. Schedule interruptions in utility services well in advance (min. 14 days) to suit the Owner's convenience and obtain approval from the Engineer. Utility interruptions may require overtime work on the part of the Contractor. Include this overtime work as a requirement of Division 26. No additional compensation will be allowed for such overtime work.

D. The Contractor shall coordinate the work and the work schedule on a weekly basis with the Owner.

2.12 System Demonstration

A. An authorized representative of the owner shall witness an operational demonstration of completed systems. Representative shall be completely instructed in the operation and maintenance of installed equipment. Representative shall sign and date a statement that confirms they have received proper comprehensive training.

END OF SECTION 260100
Section 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 26 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Building wires and cables rated 600 V and less.
 2. Connectors, splices, and terminations rated 600 V and less.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Cerro Wire LLC.
 2. Cooper Industries, Inc.
 3. General Cable Technologies Corporation.
 4. General Cable; General Cable Corporation.
 5. Southwire Company.

B. Aluminum and Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.

C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN/THWN-2.

D. Multiconductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for metal-clad cable, Type MC with ground wire.

2.2 CONNECTORS AND SPLICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. 3M.
Section 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (continued)

2. AFC Cable Systems; a part of Atkore International.
4. NSi Industries LLC.
5. O-Z/Gedney; a brand of Emerson Industrial Automation.
6. Tyco Electronics Corp.

B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

2.3 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper for feeders smaller than No. 4 AWG; copper or aluminum for feeders No. 4 AWG and larger. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

B. Branch Circuits: Copper. Solid for No. 12 AWG and smaller; stranded for No. 10 AWG and larger.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

A. Service Entrance: Type THHN/THWN-2, single conductors in raceway.

B. All Feeders: Type THHN/THWN-2, single conductors in raceway.

C. All Branch Circuits: Type THHN/THWN-2, single conductors in raceway, or Metal-clad cable, Type MC.

D. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh strain relief device at terminations to suit application.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.

B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
Section 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (continued)

C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.

D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

G. Complete cable tray systems installation according to Section 260536 "Cable Trays for Electrical Systems" prior to installing conductors and cables.

3.4 CONNECTIONS

A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.

C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack.

3.5 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

END OF SECTION 260519
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Twisted pair cabling hardware.
 2. Low-voltage control cabling.
 3. Identification products.

1.3 DEFINITIONS
 A. EMI: Electromagnetic interference.
 B. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS
 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 LOW-VOLTAGE CONTROL CABLE
 A. Paired Cable: NFPA 70, Type CMG.
 1. One pair, twisted, No. 16 AWG, stranded (19x29) tinned-copper conductors.
 2. PVC insulation.
 3. Unshielded.
 4. PVC jacket.
Section 260523 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES (continued)

2.3 CONTROL-CIRCUIT CONDUCTORS

A. Class 1 Control Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.

B. Class 2 Control Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.

C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type THHN/THWN-2, complying with UL 83 in raceway.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Test cables on receipt at Project site.
 1. Test each pair of twisted pair cable for open and short circuits.

3.2 INSTALLATION OF RACEWAYS AND BOXES

A. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for raceway selection and installation requirements for boxes, conduits, and wireways as supplemented or modified in this Section.
 1. Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.
 2. Flexible metal conduit shall not be used.

B. Comply with TIA-569-D for pull-box sizing and length of conduit and number of bends between pull points.

C. Install manufactured conduit sweeps and long-radius elbows if possible.

D. Backboards: Install backboards with 96-inch (2440-mm) dimension vertical. Butt adjacent sheets tightly and form smooth gap-free corners and joints.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

A. Comply with NECA 1.

B. Installation of Control-Circuit Conductors:
 1. Install wiring in raceways. Comply with requirements specified in Section 260533 "Raceways and Boxes for Electrical Systems."

C. Open-Cable Installation:
Section 260523 - CONTROL-VOLTAGE ELECTRICAL POWER CABLES (continued)

1. Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 30 inches (760 mm) apart.
2. Cable shall not be run through or on structural members or in contact with pipes, ducts, or other potentially damaging items. Do not run cables between structural members and corrugated panels.

3.4 REMOVAL OF CONDUCTORS AND CABLES

A. Remove abandoned conductors and cables. Abandoned conductors and cables are those installed that are not terminated at equipment and are not identified with a tag for future use.

3.5 CONTROL-CIRCUIT CONDUCTORS

A. Minimum Conductor Sizes:

1. Class 1 remote-control and signal circuits; No 14 AWG.
2. Class 2 low-energy, remote-control, and signal circuits; No. 16 AWG.
3. Class 3 low-energy, remote-control, alarm, and signal circuits; No 12 AWG.

3.6 FIRESTOPPING

A. Comply with TIA-569-D, Annex A, "Firestopping."

B. Comply with BICSI TDMM, "Firestopping" Chapter.

3.7 GROUNDING

A. For low-voltage control wiring and cabling, comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.8 IDENTIFICATION

A. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

END OF SECTION 260523
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

 A. Section includes grounding and bonding systems and equipment.

1.3 ACTION SUBMITTALS

 A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

 A. As-Built Data: Plans showing dimensioned as-built locations of grounding features specified in "Field Quality Control" Article, including the following:
 1. Ground rods.
 2. Grounding arrangements and connections for separately derived systems.

 B. Qualification Data: For testing agency and testing agency's field supervisor.

 C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

 A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

 A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

 B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

 C. Comply with UL 467 for grounding and bonding materials and equipment.
Section 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS (continued)

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Burndy
2. Erico
3. Harger
4. O-Z/Gedney
5. Thomas & Betts

2.2 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with UL 467 for grounding and bonding materials and equipment.

2.3 CONDUCTORS

A. Insulated Conductors: Copper or tinned-copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

B. Bare Copper Conductors:

4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch (6 mm) in diameter.
5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.
7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

2.4 CONNECTORS

A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.

B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.

C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
Section 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS (continued)

D. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless exothermic-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.5 GROUNDING ELECTRODES
A. Ground Rods: Copper-clad Stainless steel; 3/4 inch by 10 feet (19 mm by 3 m).

PART 3 - EXECUTION

3.1 APPLICATIONS
A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
B. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 1. Install bus horizontally, on insulated spacers 2 inches (50 mm) minimum from wall, 6 inches (150 mm) above finished floor unless otherwise indicated.
C. Conductor Terminations and Connections:
 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.

3.2 GROUNDING AT THE SERVICE
A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 EQUIPMENT GROUNDING
A. Install insulated equipment grounding conductors with all feeders and branch circuits.
B. Poles Supporting Outdoor Lighting Fixtures: Install grounding electrode and a separate insulated equipment grounding conductor in addition to grounding conductor installed with branch-circuit conductors.

3.4 INSTALLATION
A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
B. Ground Rods: Drive rods until tops are 2 inches (50 mm) below finished floor or final grade unless otherwise indicated.
Section 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS (continued)

1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
2. For grounding electrode system, install at least three rods spaced at least one-rod length from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.

C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

D. Grounding and Bonding for Piping:
 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.

E. Bonding Interior Metal Ducts: Bond metal air ducts to equipment grounding conductors of associated fans, blowers, electric heaters, and air cleaners. Install bonding jumper to bond across flexible duct connections to achieve continuity.

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Perform tests and inspections.
 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:
 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
Section 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS (continued)

2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.

3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal. Make tests at ground rods before any conductors are connected.
 a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 b. Perform tests by fall-of-potential method according to IEEE 81.

4. Prepare dimensioned Drawings locating each ground rod and ground-rod assembly, and other grounding electrodes. Identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location, and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.

D. Grounding system will be considered defective if it does not pass tests and inspections.

E. Prepare test and inspection reports.

F. Report measured ground resistances that exceed the following values:
 1. Power and Lighting Equipment or System: 10 ohms.

G. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526
Section 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Steel slotted support systems.
2. Aluminum slotted support systems.
3. Conduit and cable support devices.
4. Support for conductors in vertical conduit.
5. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch- (10-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c. in at least one surface.

1. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
3. Channel Width: Selected for applicable load criteria.
4. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
5. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.
6. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

B. Aluminum Slotted Support Systems: Extruded-aluminum channels and angles with minimum 13/32-inch- (10-mm-) diameter holes at a maximum of 8 inches (200 mm) o.c. in at least one surface.

1. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
2. Channel Material: 6063-T5 aluminum alloy.
4. Channel Width: Selected for applicable load criteria.
5. Nonmetallic Coatings: Manufacturer's standard PVC, polyurethane, or polyester coating applied according to MFMA-4.

District Two Medical Examiner's Office
15103 - V.E. Set

260529 - 1
Section 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS (continued)

6. Protect finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.

C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.

D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.

E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.

F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 6. Toggle Bolts: All-steel springhead type.

PART 3 - EXECUTION

3.1 APPLICATION

A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 1. NECA 1.
 2. NECA 101
 3. NECA 102.
 4. NECA 105.
 5. NECA 111.

B. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
Section 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS (continued)

C. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch (6 mm) in diameter.

D. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.

1. Secure raceways and cables to these supports with two-bolt conduit clamps.

E. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch (38-mm) and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

B. Raceway Support Methods: In addition to methods described in NECA 1, EMT IMC and RMC may be supported by openings through structure members, according to NFPA 70.

C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb (90 kg).

D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

1. To Wood: Fasten with lag screws or through bolts.
2. To New Concrete: Bolt to concrete inserts.
3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
4. To Existing Concrete: Expansion anchor fasteners.
5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches (100 mm) thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches (100 mm) thick.
6. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
7. To Light Steel: Sheet metal screws.
8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.

E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.
Section 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS (continued)

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

A. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.

B. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

A. Construct concrete bases of dimensions indicated, but not less than 4 inches (100 mm) larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.

B. Use 3000-psi (20.7-MPa), 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033053 "Miscellaneous Cast-in-Place Concrete."

C. Anchor equipment to concrete base as follows:

1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
2. Install anchor bolts to elevations required for proper attachment to supported equipment.
3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils (0.05 mm).

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.
PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 26 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Metal conduits, tubing, and fittings.
 2. Metal wireways and auxiliary gutters.
 3. Surface raceways.

1.3 DEFINITIONS
 A. GRC: Galvanized rigid steel conduit.
 B. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS
 A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover
 enclosures, and cabinets.

PART 2 - PRODUCTS

2.1 METAL CONDUITS, TUBING, AND FITTINGS
 A. Manufacturers: Subject to compliance with requirements, provide products by one of the
 following:
 1. Allied Tube & Conduit; a part of Atkore International.
 2. FSR Inc.
 3. O-Z/Gedney; a brand of Emerson Industrial Automation.
 4. Republic Conduit.
 5. Robroy Industries.
 7. Thomas & Betts Corporation, A Member of the ABB Group.
 8. Wheatland Tube Company.
Section 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS (continued)

B. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. GRC: Comply with ANSI C80.1 and UL 6.

D. IMC: Comply with ANSI C80.6 and UL 1242.

E. EMT: Comply with ANSI C80.3 and UL 797.

F. FMC: Comply with UL 1; zinc-coated steel.

G. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

H. Fittings for Metal Conduit: Comply with NEMA FB 1 and UL 514B.
 1. Fittings for EMT:
 a. Material: Steel.
 b. Type: compression.
 2. Connectors for EMT: Insulated throat type.

I. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. B-line, an Eaton business.
 3. MonoSystems, Inc.
 4. Square D.

B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.

C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.

D. Wireway Covers: Screw-cover type unless otherwise indicated.

E. Finish: Manufacturer’s standard enamel finish.

2.3 SURFACE RACEWAYS

A. Listing and Labeling: Surface raceways shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
Section 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS (continued)

B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Hubbell Incorporated; Wiring Device-Kellems.
 b. Panduit Corp.
 c. Wiremold / Legrand.

2.4 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. EGS/Appleton Electric.
2. FSR Inc.
3. Hoffman; a brand of Pentair Equipment Protection.
5. O-Z/Gedney; a brand of Emerson Industrial Automation.
6. RACO; Hubbell.

B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.

D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.

E. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb (23 kg). Outlet boxes designed for attachment of luminaires weighing more than 50 lb (23 kg) shall be listed and marked for the maximum allowable weight.

F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.

G. Box extensions used to accommodate new building finishes shall be of same material as recessed box.

H. Device Box Dimensions: 4 inches square by 2-1/8 inches deep (100 mm square by 60 mm deep) or 4 inches by 2-1/8 inches by 2-1/8 inches deep (100 mm by 60 mm by 60 mm deep).

I. Gangable boxes are prohibited.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

A. Indoors: Apply raceway products as specified below unless otherwise indicated:
Section 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS (continued)

1. Exposed, Not Subject to Physical Damage: EMT.
2. Concealed in Ceilings and Interior Walls and Partitions: EMT.
3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
4. Damp or Wet Locations: IMC.

B. Minimum Raceway Size: 1/2-inch (16-mm) trade size.

C. Raceway Fittings: Compatible with raceways and suitable for use and location.
 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 2. EMT: Use compression, steel fittings. Comply with NEMA FB 2.10.
 3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

D. Install surface raceways only where indicated on Drawings.

3.2 INSTALLATION

A. Comply with NEC A 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.

B. Keep raceways at least 6 inches (150 mm) away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.

C. Complete raceway installation before starting conductor installation.

D. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.

E. Arrange stub-ups so curved portions of bends are not visible above finished slab.

F. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches (300 mm) of changes in direction.

G. Conceal conduit and EMT within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.

H. Support conduit within 12 inches (300 mm) of enclosures to which attached.

I. Stub-ups to Above Recessed Ceilings:
 1. Use EMT, IMC, or RMC for raceways.
 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
Section 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS (continued)

J. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.

K. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.

L. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch (35mm) trade size and insulated throat metal bushings on 1-1/2-inch (41-mm) trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.

M. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.

N. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.

O. Cut conduit perpendicular to the length. For conduits 2-inch (53-mm) trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

P. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb (90-kg) tensile strength. Leave at least 12 inches (300 mm) of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.

Q. Surface Raceways:
 1. Install surface raceway with a minimum 2-inch (50-mm) radius control at bend points.
 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches (1200 mm) and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

R. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.

S. Comply with manufacturer's written instructions for solvent welding RNC and fittings.

T. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed luminaires, equipment subject to vibration, noise transmission, or movement, and for transformers and motors.
 1. Use LFMC in damp or wet locations subject to severe physical damage.
 2. Use LFMC or LFNC in damp or wet locations not subject to severe physical damage.

U. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
Section 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS (continued)

V. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.

W. Locate boxes so that cover or plate will not span different building finishes.

X. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.

Y. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

3.3 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies.

3.4 PROTECTION

A. Protect coatings, finishes, and cabinets from damage and deterioration.

1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.

END OF SECTION 260533
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
 2. Labels.
 3. Tapes and stencils.
 4. Signs.
 5. Paint for identification.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Comply with ASME A13.1.

B. Comply with NFPA 70.

D. Comply with ANSI Z535.4 for safety signs and labels.

E. Comply with NFPA 70E requirements for arc-flash warning labels.

F. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

2.2 COLOR AND LEGEND REQUIREMENTS

A. Raceways and Cables Carrying Circuits at 600 V or Less:
 1. Black letters on an orange field.
 2. Legend: Indicate voltage and system or service type.
Section 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS (continued)

B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder, and branch-circuit conductors.

1. Color shall be factory applied or field applied for sizes larger than No. 4 AWG if authorities having jurisdiction permit.
2. Colors for 208/120-V Circuits:
 a. Phase A: Black.
 b. Phase B: Red.
 c. Phase C: Blue.
3. Colors for 480/277-V Circuits:
 b. Phase B: Orange.
 c. Phase C: Yellow.
6. Colors for Isolated Grounds: Green with white stripe.

C. Warning Label Colors:

1. Identify system voltage with black letters on an orange background.

D. Warning labels and signs shall include, but are not limited to, the following legends:

1. Multiple Power Source Warning: "DANGER - ELECTRICAL SHOCK HAZARD - EQUIPMENT HAS MULTIPLE POWER SOURCES."
2. Workspace Clearance Warning: "WARNING - OSHA REGULATION - AREA IN FRONT OF ELECTRICAL EQUIPMENT MUST BE KEPT CLEAR FOR 36 INCHES (915 MM)."

E. Equipment Identification Labels:

1. Black letters on a white field.

2.3 LABELS

A. Self-Adhesive Wraparound Labels: Preprinted, 3-mil- (0.08-mm-) thick, vinyl flexible label with acrylic pressure-sensitive adhesive.

B. Self-Adhesive Labels: Vinyl, thermal, transfer-printed, 3-mil- (0.08-mm-) thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.

1. Minimum Nominal Size:
 a. 1-1/2 by 6 inches (37 by 150 mm) for raceway and conductors.
 b. 3-1/2 by 5 inches (76 by 127 mm) for equipment.
 c. As required by authorities having jurisdiction.
Section 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS (continued)

2.4 TAPES AND STENCILS

A. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide; compounded for outdoor use.

B. Tape and Stencil: 4-inch- (100-mm-) wide black stripes on 10-inch (250-mm) centers placed diagonally over orange background and is 12 inches (300 mm) wide. Stop stripes at legends.

C. Floor Marking Tape: 2-inch- (50-mm-) wide, 5-mil (0.125-mm) pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.

2.5 SIGNS

A. Laminated Acrylic or Melamine Plastic Signs:

1. Engraved legend.
2. Thickness:
 a. For signs up to 20 sq. in. (129 sq. cm), minimum 1/16 inch (1.6 mm) thick.
 b. For signs larger than 20 sq. in. (129 sq. cm), 1/8 inch (3.2 mm) thick.
 c. Engraved legend with black letters on white face.
 d. Self-adhesive.
 e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.6 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.

B. Install identifying devices before installing acoustical ceilings and similar concealment.
Section 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS (continued)

C. Verify identity of each item before installing identification products.

D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.

E. Apply identification devices to surfaces that require finish after completing finish work.

F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.

G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.

1. Secure tight to surface of conductor, cable, or raceway.

I. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer.

J. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.

K. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.

L. Self-Adhesive Labels:

1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.

2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.

M. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.

1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.

N. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.

O. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.

P. Nonmetallic Preprinted Tags:

1. Place in a location with high visibility and accessibility.

District Two Medical Examiner's Office
15103 - V.E. Set
Section 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS (continued)

2. Secure using UV-stabilized cable ties.

Q. Laminated Acrylic or Melamine Plastic Signs:
 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high sign; where two lines of text are required, use labels 2 inches (50 mm) high.

3.3 IDENTIFICATION SCHEDULE

A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.

B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.

C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 50 A and 120 V to Ground: Identify with self-adhesive wraparound labels.
 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot (15-m) maximum intervals in straight runs, and at 25-foot (7.6-m) maximum intervals in congested areas.

D. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box paint and circuit designation.

E. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use self-adhesive vinyl tape to identify the phase.

F. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive labels with the conductor or cable designation, origin, and destination.

G. Control-Circuit Conductor Termination Identification: For identification at terminations, provide self-adhesive labels with the conductor designation.

H. Auxiliary Electrical Systems Conductor Identification: Self-adhesive vinyl tape that is uniform and consistent with system used by manufacturer for factory-installed connections.
 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.

I. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
Section 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS (continued)

J. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.

K. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive labels.
 1. Apply to exterior of door, cover, or other access.
 2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 a. Power-transfer switches.
 b. Controls with external control power connections.

M. Operating Instruction Signs: Self-adhesive labels.

N. Emergency Operating Instruction Signs: Self-adhesive labels with white legend on a red background with minimum 3/8-inch- (10-mm-) high letters for emergency instructions at equipment used for power transfer.

O. Equipment Identification Labels:
 1. Indoor Equipment: Laminated acrylic or melamine plastic sign.
 2. Outdoor Equipment: Laminated acrylic or melamine sign.
 3. Equipment to Be Labeled:
 a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 b. Enclosures and electrical cabinets.
 c. Access doors and panels for concealed electrical items.
 d. Transformers: Label that includes tag designation indicated on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 e. Emergency system boxes and enclosures.
 f. Enclosed switches.
 g. Enclosed circuit breakers.
 h. Enclosed controllers.
 i. Variable-speed controllers.
 j. Push-button stations.
 k. Power-transfer equipment.
 l. Contactors.
 m. Remote-controlled switches, dimmer modules, and control devices.
 n. Power-generating units.
 o. Monitoring and control equipment.
 p. UPS equipment.

END OF SECTION 260553
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Indoor occupancy and vacancy sensors.
 2. Switchbox-mounted occupancy sensors.
 3. Emergency shunt relays.

B. Related Requirements:
 1. Section 262726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.

1.5 WARRANTY

A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.

 1. Failures include, but are not limited to, the following:

 a. Faulty operation of lighting control devices.

PART 2 - PRODUCTS

2.1 DIGITAL LIGHTING CONTROLS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:
Section 260923 - LIGHTING CONTROL DEVICES (continued)

1. Wattstopper.

B. Electrical Components, Devices, and Accessories:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Sensor Output: 0- to 10-V dc to operate luminaires. Sensor is powered by controller unit.

C. Power Pack: Digital controller capable of accepting 4 RJ45 inputs with three outputs rated for 20-A incandescent or LED load at 120- and 277-V ac, for 20-A ballast load or LED at 120- and 277-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc Class 2 power source, as defined by NFPA 70.

1. With integral current monitoring
 a. Compatible with digital addressable lighting interface.
 1) Plenum rated.

2.2 INDOOR OCCUPANCY AND VACANCY SENSORS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Cooper Industries, Inc.
2. Lithonia Lighting; Acuity Brands Lighting, Inc.
3. Lutron Electronics Co., Inc.
4. Philips Lighting Controls.
5. Sensor Switch, Inc.
6. Watt Stopper.

B. General Requirements for Sensors:

1. Wall or Ceiling-mounted, solid-state indoor occupancy and vacancy sensors.
2. Dual technology.
3. Separate power pack.
4. Hardwired connection to switch; and BAS and lighting control system.
5. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
6. Operation:

 a. Occupancy Sensor: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 b. Vacancy Sensor: Unless otherwise indicated, lights are manually turned on and sensor turns lights off when the room is unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 c. Combination Sensor: Unless otherwise indicated, sensor shall be programmed to turn lights on when coverage area is occupied and turn them off when unoccupied,
Section 260923 - LIGHTING CONTROL DEVICES (continued)

or to turn off lights that have been manually turned on; with a time delay for
turning lights off, adjustable over a minimum range of 1 to 15 minutes.

7. Sensor Output: Sensor is powered from the power pack.
8. Power Pack: Dry contacts rated for 20-A ballast or LED load at 120- and 277-V ac, for
13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA,
Class 2 power source, as defined by NFPA 70.
9. Mounting:
 a. Sensor: Suitable for mounting in any position on a standard outlet box.
 b. Relay: Externally mounted through a 1/2-inch (13-mm) knockout in a standard
electrical enclosure.
 c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged
door.

10. Indicator: Digital display, to show when motion is detected during testing and normal
operation of sensor.
11. Bypass Switch: Override the "on" function in case of sensor failure.
12. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux); turn lights
off when selected lighting level is present.

C. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and
ultrasonic detection methods. The particular technology or combination of technologies that
control on-off functions is selectable in the field by operating controls on unit.

1. Sensitivity Adjustment: Separate for each sensing technology.
2. Detector Sensitivity: Detect occurrences of 6-inch- (150-mm-) minimum movement of
any portion of a human body that presents a target of not less than 36 sq. in. (232 sq. cm),
and detect a person of average size and weight moving not less than 12 inches (305 mm)
in either a horizontal or a vertical manner at an approximate speed of 12 inches/s (305
mm/s).
3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area
of 1000 sq. ft. (93 sq. m) when mounted on a 96-inch- (2440-mm-) high ceiling.

2.3 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated
on Drawings or comparable product by one of the following:

1. Cooper Industries, Inc.
2. Lithonia Lighting: Acuity Brands Lighting, Inc.
3. Lutron Electronics Co., Inc.
4. Philips Lighting Controls.
5. Sensor Switch, Inc.
6. Watt Stopper.

B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor with manual on-
off switch, suitable for mounting in a single gang switchbox using hardwired connection.
Section 260923 - LIGHTING CONTROL DEVICES (continued)

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F (0 to 49 deg C).
4. Switch Rating: Not less than 800-VA ballast or LED load at 120 V, 1200-VA ballast or LED load at 277 V, and 800-W incandescent.

C. Wall-Switch:

1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft. (84 sq. m).
2. Sensing Technology: Dual technology - PIR and ultrasonic.
3. Switch Type: SP or DP (as indicated on drawings), field-selectable automatic "on," or manual "on," automatic "off."
5. Voltage: Match the circuit voltage.
6. Concealed, "off" time-delay selector at 30 seconds and 5, 10, and 20 minutes.
7. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.

2.4 EMERGENCY SHUNT RELAY

A. Basis-of-Design Product: Subject to compliance with requirements, provide product indicated on Drawings or comparable product by one of the following:

1. Wattstopper.

B. Description: NC, electrically held relay, arranged for wiring in parallel with manual or automatic switching contacts; complying with UL 924.

2.5 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

B. Classes 2 and 3 Control Cable: Multi-conductor cable with stranded-copper conductors not smaller than No. 18 No. 22 No. 24 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

C. Class 1 Control Cable: Multi-conductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
Section 260923 - LIGHTING CONTROL DEVICES (continued)

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.

B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SENSOR INSTALLATION

A. Comply with NECA 1.

B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.

C. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.3 WIRING INSTALLATION

A. Comply with NECA 1.

B. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch (13 mm).

C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.

D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.

E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.4 IDENTIFICATION

A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."

 1. Identify controlled circuits in lighting contactors.
 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.
B. Label time switches and contactors with a unique designation.

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

B. Lighting control devices will be considered defective if they do not pass tests and inspections.

C. Prepare test and inspection reports.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary
 Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:
 1. Fire-alarm control unit.
 3. System smoke detectors.
 7. Addressable interface device.
 8. Digital alarm communicator transmitter.

1.3 DEFINITIONS

A. LED: Light-emitting diode.

1.4 SYSTEM DESCRIPTION

A. Non-coded, UL-certified addressable system, with multiplexed signal transmission, dedicated
 to fire-alarm service only.

1.5 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design fire alarm system, including comprehensive engineering analysis by
 a qualified professional engineer, using performance requirements and design criteria indicated.

 B. Fire alarm system design shall be approved by authorities having jurisdiction.

 C. Fire alarm system, as designed and installed, shall comply with NFPA 72.

1.6 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

 B. Shop Drawings: For fire-alarm system. Include plans, elevations, sections, details, and
 attachments to other work.
2. Include voltage drop calculations for notification appliance circuits.
3. Include battery-size calculations.
4. Include performance parameters and installation details for each detector, verifying that each detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.
5. Include plans, sections, and elevations of heating, ventilating, and air-conditioning ducts, drawn to scale and coordinating installation of duct smoke detectors and access to them. Show critical dimensions that relate to placement and support of sampling tubes, detector housing, and remote status and alarm indicators. Locate detectors according to manufacturer's written recommendations.
6. Include voice/alarm signaling-service equipment rack or console layout, grounding schematic, amplifier power calculation, and single-line connection diagram.
7. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits.
8. Include floor plans to indicate final locations of all control panels, terminal cabinets and annunciator panels.

C. General Submittal Requirements:

1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
2. Shop Drawings shall be prepared by persons with the following qualifications:
 a. Trained and certified by manufacturer in fire-alarm system design.

D. Delegated-Design Submittal: Comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1. Drawings showing the location of each smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the detector.
2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72.
3. Drawings showing the location of each audible notification appliance, ratings of each and installation details as needed to comply with the listing conditions of the device.
4. Design Calculations: Calculate requirements for selecting the spacing and audible characteristics of each appliance in accordance with NFPA 72 sections 7.4.1 General Requirements, 7.4.2 Public Mode Audible Requirements, and 7.4.7 Location of Audible Notification Appliances for a Building or Structure.
5. Drawings showing the location of each visible notification appliance, ratings of each and installation details as needed to comply with the listing conditions of the device.
6. Design Calculations: Calculate requirements for selecting the spacing and visible characteristics of each appliance in accordance with NFPA 72 sections 7.5 Visible Characteristics – Public Mode.
CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 017823 "Operation and Maintenance Data," deliver copies to authorities having jurisdiction and include the following:

1. Comply with the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.
2. Provide "Record of Completion Documents" according to NFPA 72 article "Permanent Records" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter.
3. Record copy of site-specific software.
4. Provide "Maintenance, Inspection and Testing Records" according to NFPA 72 article of the same name and include the following:
 a. Frequency of testing of installed components.
 b. Frequency of inspection of installed components.
 c. Requirements and recommendations related to results of maintenance.
 d. Manufacturer's user training manuals.
5. Manufacturer's required maintenance related to system warranty requirements.
6. Abbreviated operating instructions for mounting at fire-alarm control unit.

B. Software and Firmware Operational Documentation:

1. Software operating and upgrade manuals.
2. Program Software Backup: On magnetic media or compact disk, complete with data files.
3. Device address list.

MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Lamps for Strobe Units: Quantity equal to 10 percent of amount installed, but no fewer than 1 unit.
2. Smoke Detectors: Quantity equal to 10 percent of amount of each type installed, but no fewer than 1 unit of each type.
3. Detector Bases: Quantity equal to 2 percent of amount of each type installed, but no fewer than 1 unit of each type.
4. Keys and Tools: One extra set for access to locked and tamper-proofed components.
5. Audible and Visual Notification Appliances: One of each type installed.
6. Fuses: Two of each type installed in the system.

QUALITY ASSURANCE

A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
Section 260953 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM (continued)

B. Source Limitations for Fire-Alarm System and Components: Obtain fire-alarm system from single source from single manufacturer. Components shall be compatible with, and operate as, an extension of existing system.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

1.10 SOFTWARE SERVICE AGREEMENT

A. Comply with UL 864.

B. Technical Support: Beginning with Substantial Completion, provide software support for two years.

C. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.

1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Fire Control Instruments, Inc.; a Honeywell company.
 2. GE Infrastructure; a unit of General Electric Company.
 3. NOTIFIER; a Honeywell company.
 5. SimplexGrinnell LP; a Tyco International company.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:

2. Heat detectors.
3. Smoke detectors.
4. Duct smoke detectors.

B. Fire-alarm signal shall initiate the following actions:

1. Continuously operate alarm notification appliances.
Section 260953 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM (continued)

2. Identify alarm at fire-alarm control unit and any remote annunciators.
3. Transmit an alarm signal to the remote alarm receiving station.
4. Unlock electric door locks in designated egress paths.
5. Activate alarm communication system.
6. Close smoke dampers in air ducts of designated air-conditioning duct systems.
7. Activate emergency lighting control.
8. Activate emergency shutoffs for gas and fuel supplies.
9. Record events in the system memory.

C. System trouble signal initiation shall be by one or more of the following devices and actions:

1. Open circuits, shorts, and grounds in designated circuits.
2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
3. Loss of primary power at fire-alarm control unit.
4. Ground or a single break in fire-alarm control unit internal circuits.
5. Abnormal ac voltage at fire-alarm control unit.
7. Failure of battery charging.
8. Abnormal position of any switch at fire-alarm control unit or annunciator.

D. System Trouble and Supervisory Signal Actions: Initiate notification appliance and announce at fire-alarm control unit and any remote annunciators. Record the event on system printer.

2.3 FIRE-ALARM CONTROL UNIT

A. General Requirements for Fire-Alarm Control Unit:

1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864 and listed and labeled by an NRTL.

 a. System software and programs shall be held in flash electrically erasable programmable read-only memory (EEPROM), retaining the information through failure of primary and secondary power supplies.

 b. Include a real-time clock for time annotation of events on the event recorder.

2. Addressable initiation devices that communicate device identity and status.

 a. Smoke sensors shall additionally communicate sensitivity setting and allow for adjustment of sensitivity at fire-alarm control unit.

 b. Temperature sensors shall additionally test for and communicate the sensitivity range of the device.

3. Addressable control circuits for operation of mechanical equipment.

B. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
Section 260953 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM (continued)

1. Annunciator and Display: Liquid-crystal type, 3 line(s) of 40 characters, minimum.
2. Keypad: Arranged to permit entry and execution of programming, display, and control commands and to indicate control commands to be entered into the system for control of smoke-detector sensitivity and other parameters.

C. Circuits:

1. Initiating Device, Notification Appliance, and Signaling Line Circuits: NFPA 72, Class A.

D. Smoke-Alarm Verification:

1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
2. Activate an NRTL-listed and -approved "alarm-verification" sequence at fire-alarm control unit and detector.
3. Record events.
4. Sound general alarm if the alarm is verified.
5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.

E. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.

F. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.

1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.

G. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

H. Instructions: Computer printout or typewritten instruction card mounted behind a plastic or glass cover in a stainless-steel or aluminum frame. Include interpretation and describe appropriate response for displays and signals. Briefly describe the functional operation of the system under normal, alarm, and trouble conditions.

2.4 MANUFACTURED FIRE-ALARM BOXES

A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.

1. Single-action mechanism, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
Section 260953 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM (continued)

2. Double-action mechanism requiring two actions to initiate an alarm, breaking-glass or plastic-rod pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
3. Station Reset: Key- or wrench-operated switch.
4. Indoor Protective Shield: Factory-fabricated clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm. Lifting the cover actuates an integral battery-powered audible horn intended to discourage false-alarm operation.
5. Weatherproof Protective Shield: Factory-fabricated clear plastic enclosure hinged at the top to permit lifting for access to initiate an alarm.

2.5 SYSTEM SMOKE DETECTORS

A. General Requirements for System Smoke Detectors:

1. Comply with UL 268; operating at 24-V dc, nominal.
2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
3. Base Mounting: Detector and associated electronic components shall be mounted in a twist-lock module that connects to a fixed base. Provide terminals in the fixed base for connection to building wiring.
4. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
5. Integral Visual-Indicating Light: LED type indicating detector has operated.
6. Remote Control: Unless otherwise indicated, detectors shall be analog-addressable type, individually monitored at fire-alarm control unit for calibration, sensitivity, and alarm condition and individually adjustable for sensitivity by fire-alarm control unit.
 a. Rate-of-rise temperature characteristic shall be selectable at fire-alarm control unit for 15 or 20 deg F (8 or 11 deg C) per minute.
 b. Fixed-temperature sensing shall be independent of rate-of-rise sensing and shall be settable at fire-alarm control unit to operate at 135 or 155 deg F (57 or 68 deg C).
 c. Provide multiple levels of detection sensitivity for each sensor.

B. Photoelectric Smoke Detectors:

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

C. Duct Smoke Detectors: Photoelectric type complying with UL 268A.

1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 a. Primary status.
 b. Device type.
 c. Present average value.
 d. Present sensitivity selected.
 e. Sensor range (normal, dirty, etc.).

3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector.

4. Each sensor shall have multiple levels of detection sensitivity.

5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.

2.6 HEAT DETECTORS

A. General Requirements for Heat Detectors: Comply with UL 521.

B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F (57 deg C) or a rate of rise that exceeds 15 deg F (8 deg C) per minute unless otherwise indicated.
 1. Mounting: Twist-lock base interchangeable with smoke-detector bases.
 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.

2.7 NOTIFICATION APPLIANCES

A. General Requirements for Notification Appliances: Connected to notification appliance signal circuits, zoned as indicated, equipped for mounting as indicated and with screw terminals for system connections.
 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated and with screw terminals for system connections.

B. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet (3 m) from the horn, using the coded signal prescribed in UL 464 test protocol.

C. Visible Notification Appliances: Xenon strobe lights comply with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- (25-mm-) high letters on the lens.
 1. Rated Light Output:
 a. 15/30/75/110 cd, selectable in the field.
Section 260953 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM (continued)

2. Mounting: Wall mounted unless otherwise indicated.
3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
4. Flashing shall be in a temporal pattern, synchronized with other units.
5. Strobe Leads: Factory connected to screw terminals.

2.8 REMOTE ANNUNCIATOR

A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.

1. Mounting: Flush cabinet, NEMA 250, Type 1.

B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.9 ADDRESSABLE INTERFACE DEVICE

A. Description: Microelectronic monitor module, NRTL listed for use in providing a system address for alarm-initiating devices for wired applications with normally open contacts.

2.10 DIGITAL ALARM COMMUNICATOR TRANSMITTER

A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632 and be listed and labeled by an NRTL.

B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from fire-alarm control unit and automatically capture one telephone line and dial a preset number for a remote central station. When contact is made with central station, signals shall be transmitted. If service on line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on telephone line, transmitter shall initiate the local trouble signal.

C. Local functions and display at the digital alarm communicator transmitter shall include the following:

1. Verification that telephone line is available.
2. Programming device.
3. LED display.
5. Communications failure with the central station or fire-alarm control unit.

D. Digital data transmission shall include the following:
Section 260953 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM (continued)

1. Address of the alarm-initiating device.
2. Address of the supervisory signal.
3. Address of the trouble-initiating device.
4. Loss of ac supply or loss of power.
5. Low battery.
6. Abnormal test signal.
7. Communication bus failure.

E. Secondary Power: Integral rechargeable battery and automatic charger.

F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

A. Comply with NFPA 72 for installation of fire-alarm equipment.

B. Install wall-mounted equipment, with tops of cabinets not more than 72 inches (1830 mm) above the finished floor.

C. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct.

D. Audible Alarm-Indicating Devices: Install not less than 6 inches (150 mm) below the ceiling. Install and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille.

E. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches (150 mm) below the ceiling.

F. Device Location-Indicating Lights: Locate in public space near the device they monitor.

G. Fire-Alarm Control Unit: Surface mounted, with tops of cabinets not more than 72 inches (1830 mm) above the finished floor.

H. Annunciator: Install with top of panel not more than 72 inches (1830 mm) above the finished floor.

3.2 CONNECTIONS

A. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 3 feet (1 m) from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.

1. Alarm-initiating connection to activate emergency lighting control.
2. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

B. Install framed instructions in a location visible from fire-alarm control unit.

3.4 GROUNDING

A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.

3.5 FIELD QUALITY CONTROL

A. Field tests shall be witnessed by Engineer and authorities having jurisdiction.

B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

C. Perform tests and inspections.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

D. Tests and Inspections:

1. Visual Inspection: Conduct visual inspection prior to testing.

 a. Inspection shall be based on completed Record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" Table in the "Documentation" Section of the "Fundamentals of Fire Alarm Systems" Chapter.

 b. Comply with "Visual Inspection Frequencies" Table in the "Inspection" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.

3. Test audible appliances for the public operating mode according to manufacturer's written instructions. Perform the test using a portable sound-level meter complying with Type 2 requirements in ANSI S1.4.

4. Test audible appliances for the private operating mode according to manufacturer's written instructions.

5. Test visible appliances for the public operating mode according to manufacturer's written instructions.

6. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" Section of the "Fundamentals of Fire Alarm
Section 260953 - DIGITAL, ADDRESSABLE FIRE-ALARM SYSTEM (continued)

Systems" Chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" Section of the "Inspection, Testing and Maintenance" Chapter in NFPA 72.

E. Reacception Testing: Perform reacception testing to verify the proper operation of added or replaced devices and appliances.

F. Fire-alarm system will be considered defective if it does not pass tests and inspections.

G. Prepare test and inspection reports.

H. Maintenance Test and Inspection: Perform tests and inspections listed for weekly, monthly, quarterly, and semiannual periods. Use forms developed for initial tests and inspections.

I. Annual Test and Inspection: One year after date of Substantial Completion, test fire-alarm system complying with visual and testing inspection requirements in NFPA 72. Use forms developed for initial tests and inspections.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 260953
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Distribution panelboards.
2. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS

A. ATS: Acceptance testing specification.
B. GFCI: Ground-fault circuit interrupter.
C. MCCB: Molded-case circuit breaker.
D. SPD: Surge protective device.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of panelboard.

1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. Include the following:

1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
2. Time-current curves, including selectable ranges for each type of overcurrent protective device that allows adjustments.
Section 262416 - PANELBOARDS (continued)

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 1. Keys: Two spares for each type of panelboard cabinet lock.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Remove loose packing and flammable materials from inside panelboards.

B. Handle and prepare panelboards for installation according to NECA 407 and NEMA PB 1.

1.9 FIELD CONDITIONS

A. Environmental Limitations:
 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry and work above panelboards is complete.
 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 a. Ambient Temperature: Not exceeding minus 22 deg F (minus 30 deg C) to plus 104 deg F (plus 40 deg C).

1.10 WARRANTY

A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.
 1. SPD Warranty Period: Ten years from date of Substantial Completion.
Section 262416 - PANELBOARDS (continued)

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

 A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

 B. Comply with NEMA PB 1.

 C. Comply with NFPA 70.

 D. Enclosures: Flush and Surface-mounted, dead-front cabinets.

 1. Rated for environmental conditions at installed location.

 a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 b. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

 2. Height: 84 inches (2.13 m) maximum.

 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.

 4. Gutter Extension and Barrier: Same gage and finish as panelboard enclosure; integral with enclosure body. Arrange to isolate individual panel sections.

 5. Finishes:

 a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.

 E. Incoming Mains:

 1. Location: As indicated on plans.
 2. Main Breaker: Main lug interiors up to 400 amperes shall be field convertible to main breaker.

 F. Phase, Neutral, and Ground Buses:

 a. Bus shall be fully rated the entire length.

 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.

 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.

Section 262416 - PANELBOARDS (continued)

G. Conductor Connectors: Suitable for use with conductor material and sizes.

2. Terminations shall allow use of 75 deg C rated conductors without derating.
3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
4. Main and Neutral Lugs: Compression type for power panelboards and mechanical type for lighting and appliance panelboards, with a lug on the neutral bar for each pole in the panelboard.
5. Ground Lugs and Bus-Configured Terminators: Compression type for power panelboards and mechanical type for lighting and appliance panelboards, with a lug on the bar for each pole in the panelboard.
6. Feed-Through Lugs: Compression type for power panelboards and mechanical type for lighting and appliance panelboards, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
7. Subfeed (Double) Lugs: Compression type for power panelboards and mechanical type for lighting and appliance panelboards, suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.

H. NRTL Label: Panelboards shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.

I. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.

1. Percentage of Future Space Capacity: 20 percent.

J. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.

1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

A. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 2.

2.3 POWER PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
Section 262416 - PANELBOARDS (continued)

1. Eaton.
2. SIEMENS Industry, Inc.; Energy Management Division.
3. Square D; by Schneider Electric.

B. Panelboards: NEMA PB 1, distribution type.

D. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. SIEMENS Industry, Inc.; Energy Management Division.
3. Square D; by Schneider Electric.

B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.

C. Mains: Circuit breaker or lugs only as indicated.

D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.

E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. SIEMENS Industry, Inc.; Energy Management Division.
3. Square D; by Schneider Electric.

B. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.

1. Thermal-Magnetic Circuit Breakers:
 a. Inverse time-current element for low-level overloads.
 b. Instantaneous magnetic trip element for short circuits.
 c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

3. Electronic Trip Circuit Breakers:
Section 262416 - PANELBOARDS (continued)

a. RMS sensing.
b. Field-replaceable rating plug or electronic trip.
c. Digital display of settings, trip targets, and indicated metering displays.
d. Multi-button keypad to access programmable functions and monitored data.
e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
f. Integral test jack for connection to portable test set or laptop computer.
g. Field-Adjustable Settings:
 1) Instantaneous trip.
 2) Long- and short-time pickup levels.
 3) Long and short time adjustments.
 4) Ground-fault pickup level, time delay, and I squared T response.

4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.

5. GFCl Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).

6. GFEP Circuit Breakers: Class B ground-fault protection (30-mA trip).

9. MCCB Features and Accessories:
 a. Standard frame sizes, trip ratings, and number of poles.
 b. Breaker handle indicates tripped status.
 c. UL listed for reverse connection without restrictive line or load ratings.
 d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 e. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and HID lighting circuits.
 f. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 g. Communication Capability: Circuit-breaker-mounted communication module with functions and features compatible with power monitoring and control system specified in Section 260913 "Electrical Power Monitoring and Control."
 h. Shunt Trip: 24-V trip coil, unless indicated otherwise on plans, energized from separate circuit, set to trip at 75 percent of rated voltage.
 i. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage without intentional time delay.
 j. Rating Plugs: Three-pole breakers with ampere ratings greater than 150 amperes shall have interchangeable rating plugs or electronic adjustable trip units.
 k. Auxiliary Contacts: One, SPDT switch with "a" and "b" contacts; "a" contacts mimic circuit-breaker contacts and "b" contacts operate in reverse of circuit-breaker contacts.
 l. Alarm Switch: Single-pole, normally open contact that actuates only when circuit breaker trips.
 m. Key Interlock Kit: Externally mounted to prohibit circuit-breaker operation; key shall be removable only when circuit breaker is in off position.
Section 262416 - PANELBOARDS (continued)

n. Zone-Selective Interlocking: Integral with electronic trip unit; for interlocking ground-fault protection function with other upstream or downstream devices.
o. Multipole units enclosed in a single housing with a single handle.
p. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.

2.6 IDENTIFICATION

A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.

 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

2.7 ACCESSORY COMPONENTS AND FEATURES

A. Accessory Set: Include tools and miscellaneous items required for overcurrent protective device test, inspection, maintenance, and operation.

B. Portable Test Set: For testing functions of solid-state trip devices without removing from panelboard. Include relay and meter test plugs suitable for testing panelboard meters and switchboard class relays.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.

B. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.

C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.

D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.

E. Proceed with installation only after unsatisfactory conditions have been corrected.
3.2 INSTALLATION

A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Comply with NECA 1.

C. Install panelboards and accessories according to NEMA PB 1.1.

D. Equipment Mounting:
 1. Attach panelboard to the vertical finished or structural surface behind the panelboard.

E. Mount panelboard cabinet plumb and rigid without distortion of box.

F. Mount surface-mounted panelboards to steel slotted supports 5/8 inch (16 mm) in depth. Orient steel slotted supports vertically.

G. Install overcurrent protective devices and controllers not already factory installed.
 1. Set field-adjustable, circuit-breaker trip ranges.
 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.

H. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.

I. Install filler plates in unused spaces.

J. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

3.3 IDENTIFICATION

A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."

B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.

C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
Section 262416 - PANELBOARDS (continued)

E. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.

B. Tests and Inspections:
 1. Perform the following infrared scan tests and inspections and prepare reports:
 a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each panelboard. Remove front panels so joints and connections are accessible to portable scanner.
 b. Instruments and Equipment:
 1) Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

C. Panelboards will be considered defective if they do not pass tests and inspections.

D. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

B. Set field-adjustable circuit-breaker trip ranges as specified in Section 260573 "Overcurrent Protective Device Coordination Study."

END OF SECTION 262416
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Straight-blade convenience and tamper-resistant receptacles.
2. GFCI receptacles.
3. Twist-locking receptacles.
4. Pendant cord-connector devices.
5. Cord and plug sets.
6. Toggle switches.
7. Wall switch sensor light switches with dual technology sensors.
8. Digital timer light switches.
9. Wall plates.

1.3 DEFINITIONS

A. Abbreviations of Manufacturers' Names:

1. Cooper: Cooper Wiring Devices; Division of Cooper Industries, Inc.

B. BAS: Building automation system.

C. EMI: Electromagnetic interference.

D. GFCI: Ground-fault circuit interrupter.

E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.
Section 262726 - WIRING DEVICES (continued)

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

C. Devices for Owner-Furnished Equipment:
 1. Receptacles: Match plug configurations.
 2. Cord and Plug Sets: Match equipment requirements.

D. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STRAIGHT-BLADE RECEPTACLES

A. Duplex Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.

2.3 GFCI RECEPTACLES

A. General Description:
 1. 125 V, 20 A, straight blade, non-feed-through type.
 2. Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, UL 943 Class A, and FS W-C-596.
 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.

2.4 TWIST-LOCKING RECEPTACLES

A. Twist-Lock, Single Convenience Receptacles: 125 V, 20 A; comply with NEMA WD 1, NEMA WD 6 Configuration L5-20R, and UL 498.

2.5 PENDANT CORD-CONNECTOR DEVICES

A. Description:
 1. Matching, locking-type plug and receptacle body connector.
2.6 CORD AND PLUG SETS

A. Description:
 1. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 2. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.

2.7 TOGGLE SWITCHES

A. Comply with NEMA WD 1, UL 20, and FS W-S-896.

B. Switches, 120/277 V, 20 A:

C. Pilot-Light Switches: 120/277 V, 20 A.
 1. Description: Single pole, with LED-lighted handle, illuminated when switch is off.

2.8 WALL SWITCH SENSOR LIGHT SWITCH, DUAL TECHNOLOGY

A. Description: Switchbox-mounted, combination lighting-control sensor and conventional switch lighting-control unit using dual technology.

 2. Rated 960 W at 120-V ac for tungsten lighting, 10 A at 120-V ac or 10 A at 277-V ac for fluorescent or LED lighting, and 1/4 hp at 120-V ac.
 3. Adjustable time delay of 10 minutes.
 4. Able to be locked to Manual-On mode.
 5. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc (21.5 to 2152 lux).
 6. Comply with NEMA WD 1, UL 20, and FS W-S-896.

2.9 DIGITAL TIMER LIGHT SWITCH

A. Description: Switchbox-mounted, combination digital timer and conventional switch lighting-control unit, with backlit digital display, with selectable time interval in 10-minute increments.

 1. Rated 960 W at 120-V ac for tungsten lighting, 10 A at 120-V ac or 10 A at 277-V ac for fluorescent or LED lighting, and 1/4 hp at 120-V ac.
Section 262726 - WIRING DEVICES (continued)

2.10 WALL-BOX DIMMERS

A. Dimmer Switches: Modular, full-wave, solid-state units with integral, quiet on-off switches, with audible frequency and EMI/RFI suppression filters.

B. Control: Continuously adjustable slider; with single-pole or three-way switching. Comply with UL 1472.

C. LED Lamp Dimmer Switches: Modular; compatible with LED lamps; trim potentiometer to adjust low-end dimming; capable of consistent dimming with low end not greater than 20 percent of full brightness.

2.11 WALL PLATES

A. Single and combination types shall match corresponding wiring devices.
 1. Plate-Securing Screws: Metal with head color to match plate finish.
 2. Material for Finished Spaces: 0.035-inch- (1-mm-) thick, satin-finished, Type 302 stainless steel.
 4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

B. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant thermoplastic with lockable cover.

2.12 PREFABRICATED MULTIOUTLET ASSEMBLIES

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 2. Wiremold / Legrand.

B. Description:
 1. Two-piece surface metal raceway, with factory-wired multi-outlet harness.
 2. Components shall be products from single manufacturer designed for use as a complete, matching assembly of raceways and receptacles.

C. Raceway Material: Metal, with manufacturer's standard finish.

D. Multi-outlet Harness:
 1. Receptacles: 15-A, 125-V, NEMA WD 6 Configuration 5-15R receptacles complying with NEMA WD 1, UL 498, and FS W-C-596.
 2. Receptacle Spacing: 18 inches (460 mm).
 3. Wiring: No. 12 AWG solid, Type THHN copper, two circuit, connecting alternating receptacles.
Section 262726 - WIRING DEVICES (continued)

2.13 FINISHES

A. Device Color:
 1. Wiring Devices Connected to Normal Power System: White unless otherwise indicated or required by NFPA 70 or device listing.

B. Wall Plate Color: For plastic covers, match device color.
 1. Switched Receptacles: Mark wall plate of 120 volt 15-A and 20-A receptacles switched by an automatic control device with symbol per NEC 406.3(E).

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:
 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:
 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
 4. Existing Conductors:
 a. Cut back and pigtail, or replace all damaged conductors.
 b. Straighten conductors that remain and remove corrosion and foreign matter.
 c. Pigtailling existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:
 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
Section 262726 - WIRING DEVICES (continued)

2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
8. Tighten unused terminal screws on the device.
9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:

1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the right.

F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.

G. Dimmers:

1. Install dimmers within terms of their listing.
2. Install unshared neutral conductors on line and load side of dimmers according to manufacturers' device listing conditions in the written instructions.

H. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

3.2 IDENTIFICATION

A. Comply with Section 260553 "Identification for Electrical Systems."

B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.3 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Test Instruments: Use instruments that comply with UL 1436.
 2. Test Instrument for Convenience Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

B. Tests for Convenience Receptacles:
Section 262726 - WIRING DEVICES (continued)

1. Line Voltage: Acceptable range is 105 to 132 V.
2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
3. Ground Impedance: Values of up to 2 ohms are acceptable.
4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
5. Using the test plug, verify that the device and its outlet box are securely mounted.
6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.

C. Wiring device will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

END OF SECTION 262726
Section 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 26 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

1. Fusible switches.
2. Non-fusible switches.
3. Enclosures.

1.3 DEFINITIONS

A. NC: Normally closed.
B. NO: Normally open.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.

1. Enclosure types and details for types other than NEMA 250, Type 1.
2. Current and voltage ratings.
3. Short-circuit current ratings (interrupting and withstand, as appropriate).
4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
5. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
2. Fuse Pullers: Two for each size and type.
Section 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS (continued)

1.6 QUALITY ASSURANCE

A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

D. Comply with NFPA 70.

1.7 PROJECT CONDITIONS

A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:

1. Ambient Temperature: Not less than minus 22 deg F (minus 30 deg C) and not exceeding 104 deg F (40 deg C).

1.8 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton
2. General Electric Company
4. Square D; by Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:
Section 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS (continued)

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
4. Auxiliary Contact Kit: One NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
5. Hook-stick Handle: Allows use of a hook-stick to operate the handle.
6. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.2 NONFUSIBLE SWITCHES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Eaton.
2. General Electric Company.
4. Square D; by Schneider Electric.

B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
3. Auxiliary Contact Kit: One NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open.
4. Hook-stick Handle: Allows use of a hook-stick to operate the handle.
5. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.3 ENCLOSURES

A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.

1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
2. Outdoor Locations: NEMA 250, Type 3R.
4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
Section 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS (continued)

PART 3 - EXECUTION

3.1 EXAMINATION
 A. Examine elements and surfaces to receive enclosed switches for compliance with installation tolerances and other conditions affecting performance of the Work.
 B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION
 A. Install individual wall-mounted switches with tops at uniform height unless otherwise indicated.
 B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
 C. Install fuses in fusible devices.
 D. Comply with NECA 1.

3.3 IDENTIFICATION
 A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.4 ADJUSTING
 A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 262816
Section 263213 - ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes packaged engine-generator sets for emergency power supply with the following features:
 1. Diesel engine.
 2. Unit-mounted cooling system.
 3. Outdoor enclosure.

B. Related Sections include the following:
 1. Division 26 Section "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine-generator sets.

1.3 DEFINITIONS

A. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

1.4 SUBMITTALS

A. Product Data: For each type of packaged engine generator indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. In addition, include the following:
 1. Thermal damage curve for generator.
 2. Time-current characteristic curves for generator protective device.

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 1. Dimensioned outline plan and elevation drawings of engine-generator set and other components specified.
 2. Design Calculations: Signed and sealed by a qualified professional engineer. Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
Section 263213 - ENGINE GENERATORS (continued)

3. Vibration Isolation Base Details: Signed and sealed by a qualified professional engineer. Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include base weights.
5. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
6. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

C. Qualification Data:

D. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:

1. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.

1. Maintenance Proximity: Not more than one hours' normal travel time from Installer's place of business to Project site.
2. Engineering Responsibility: Preparation of data for vibration isolators and seismic restraints of engine skid mounts, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.

B. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 50 miles of Project site, a service center capable of providing training, parts, and emergency maintenance repairs.

C. Source Limitations: Obtain packaged generator sets and auxiliary components through one source from a single manufacturer.

D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

E. Comply with ASME B15.1.

F. Comply with NFPA 37.

G. Comply with NFPA 70.

H. Comply with NFPA 110 requirements.

I. Comply with UL 2200.
Section 263213 - ENGINE GENERATORS (continued)

J. Engine Exhaust Emissions: Comply with applicable state and local government requirements.

K. Noise Emission: Comply with applicable state and local government requirements for maximum noise level at adjacent property boundaries due to sound emitted by generator set including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.

1.6 PROJECT CONDITIONS

A. Environmental Conditions: Engine-generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:

1. Ambient Temperature: 5 to 40 deg C.
2. Relative Humidity: 0 to 95 percent.

1.7 COORDINATION

A. Coordinate size and location of concrete bases for package engine generators. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

1.8 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of packaged engine generators and associated auxiliary components that fail in materials or workmanship within specified warranty period.

1. Warranty Period: 5 years from date of Substantial Completion.

1.9 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, provide 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include quarterly exercising to check for proper starting, load transfer, and running under load. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Provide parts and supplies same as those used in the manufacture and installation of original equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
Section 263213 - ENGINE GENERATORS (continued)

1. Caterpillar; Engine Div.
2. Generac Power Systems, Inc.
3. Kohler Co.; Generator Division.

2.2 ENGINE-GENERATOR SET

A. Factory-assembled and -tested, engine-generator set.

B. Mounting Frame: Maintain alignment of mounted components without depending on concrete foundation; and have lifting attachments.
 1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and generator-set center of gravity.

C. Capacities and Characteristics:
 1. Power Output Ratings: Nominal ratings as indicated.
 2. Output Connections: Three-phase, four wire.
 3. Nameplates: For each major system component to identify manufacturer’s name and address, and model and serial number of component.

D. Generator-Set Performance:
 1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
 2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
 3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
 4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
 5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
 6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
 7. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
 8. Start Time: Comply with NFPA 110, Type 10, system requirements.

E. Generator-Set Performance for Sensitive Loads:
1. Oversizing generator compared with the rated power output of the engine is permissible to meet specified performance.

 a. Nameplate Data for Oversized Generator: Show ratings required by the Contract Documents rather than ratings that would normally be applied to generator size installed.

2. Steady-State Voltage Operational Bandwidth: 1 percent of rated output voltage from no load to full load.

3. Transient Voltage Performance: Not more than 10 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within 0.5 second.

4. Steady-State Frequency Operational Bandwidth: Plus or minus 0.25 percent of rated frequency from no load to full load.

5. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.

6. Transient Frequency Performance: Less than 2-Hz variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within three seconds.

7. Output Waveform: At no load, harmonic content measured line to neutral shall not exceed 2 percent total with no slot ripple. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.

8. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 300 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to winding insulation or other generator system components.

9. Excitation System: Performance shall be unaffected by voltage distortion caused by nonlinear load.

 a. Provide permanent magnet excitation for power source to voltage regulator.

10. Start Time: Comply with NFPA 110, Type 10, system requirements.

2.3 ENGINE

B. Rated Engine Speed: 1800 rpm.

C. Maximum Piston Speed for Four-Cycle Engines: 2250 fpm (11.4 m/s).

D. Lubrication System: The following items are mounted on engine or skid:

 1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.

 2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.
Section 263213 - ENGINE GENERATORS (continued)

3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.

E. Engine Fuel System:

2. Relief-Bypass Valve: Automatically regulates pressure in fuel line and returns excess fuel to source.
3. Dual Natural Gas with LP-Gas Backup (Vapor-Withdrawal) System:
 a. Carburetor.
 b. Fuel-Shutoff Solenoid Valves: One for each fuel source.
 c. Flexible Fuel Connectors: One for each fuel source.

F. Coolant Jacket Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with NFPA 110 requirements for Level 2 equipment for heater capacity.

G. Governor: Adjustable isochronous, with speed sensing.

H. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on engine-generator-set mounting frame and integral engine-driven coolant pump.

1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
3. Expansion Tank: Constructed of welded steel plate and rated to withstand maximum closed-loop coolant system pressure for engine used. Equip with gage glass and petcock.
4. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
 a. Rating: 50-psig (345-kPa) maximum working pressure with coolant at 180 deg F (82 deg C), and non-collapsible under vacuum.
 b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.

I. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements. Muffler shall be mounted inside the outdoor enclosure.

1. Minimum sound attenuation of 25 dB at 500 Hz.
2. Sound level measured at a distance of 10 feet (3 m) from exhaust discharge after installation is complete shall be 85 dBA or less.

Section 263213 - ENGINE GENERATORS (continued)

K. Starting System: 12-V electric, with negative ground.

1. Components: Sized so they will not be damaged during a full engine-cranking cycle with ambient temperature at maximum specified in Part 1 "Project Conditions" Article.
2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
3. Cranking Cycle: As required by NFPA 110 for system level specified.
4. Battery: Adequate capacity within ambient temperature range specified in Part 1 "Project Conditions" Article to provide specified cranking cycle at least twice without recharging.
5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Thermostatically controlled heater shall be arranged to maintain battery above 10 deg C regardless of external ambient temperature within range specified in Part 1 "Project Conditions" Article. Include accessories required to support and fasten batteries in place.
8. Battery Charger: Current-limiting, automatic-equalizing and float-charging type. Unit shall comply with UL 1236 and include the following features:
 a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
 b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 deg C to plus 60 deg C to prevent overcharging at high temperatures and undercharging at low temperatures.
 c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
 e. Safety Functions: Sense abnormally low battery voltage and close contacts providing low battery voltage indication on control and monitoring panel. Sense high battery voltage and loss of ac input or dc output of battery charger. Either condition shall close contacts that provide a battery-charger malfunction indication at system control and monitoring panel.
 f. Enclosure and Mounting: NEMA 250, Type 1, wall-mounted cabinet.

2.4 FUEL OIL STORAGE

A. Comply with NFPA 30.

B. Base-Mounted Fuel Oil Tank: Factory installed and piped, complying with UL 142 fuel oil tank. Features include the following:

1. Tank level indicator.
2. Capacity: Fuel for 48 hours' continuous operation at 100 percent rated power output.
3. Vandal-resistant fill cap.
2.5 CONTROL AND MONITORING

A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of generator set. When mode-selector switch is switched to the on position, generator set starts. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms. Operation of a remote emergency-stop switch also shuts down generator set.

B. Configuration: Operating and safety indications, protective devices, basic system controls, and engine gages shall be grouped in a common control and monitoring panel mounted on the generator set. Mounting method shall isolate the control panel from generator-set vibration.

C. Indicating and Protective Devices and Controls: As required by NFPA 110 for Level 12 system, and the following:

1. AC voltmeter.
2. AC ammeter.
3. AC frequency meter.
4. DC voltmeter (alternator battery charging).
5. Engine-coolant temperature gage.
6. Engine lubricating-oil pressure gage.
7. Running-time meter.
9. Generator-voltage adjusting rheostat.

D. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.

E. Common Remote Audible Alarm: Comply with NFPA 110 requirements for Level 1 systems. Include necessary contacts and terminals in control and monitoring panel.

1. Overcrank shutdown.
2. Coolant low-temperature alarm.
3. Control switch not in auto position.
4. Battery-charger malfunction alarm.
5. Battery low-voltage alarm.

F. Remote Emergency-Stop Switch: Flush; wall mounted, unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

2.6 GENERATOR OVERCURRENT AND FAULT PROTECTION

A. Generator Circuit Breaker: Molded-case, thermal-magnetic type; 100 percent rated; complying with NEMA AB 1 and UL 489.

1. Tripping Characteristic: Designed specifically for generator protection.
2. Trip Rating: Matched to generator rating.
3. Shunt Trip: Connected to trip breaker when generator set is shut down by other protective devices.
4. Mounting: Adjacent to or integrated with control and monitoring panel.

2.7 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

A. Comply with NEMA MG 1.

B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.

C. Electrical Insulation: Class H or Class F.

D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required.

E. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.

F. Enclosure: Dripproof.

G. Instrument Transformers: Mounted within generator enclosure.

H. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.
 1. Adjusting rheostat on control and monitoring panel shall provide plus or minus 5 percent adjustment of output-voltage operating band.

I. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.

J. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.

2.8 OUTDOOR GENERATOR-SET ENCLOSURE

A. Description: Vandal-resistant, weatherproof steel housing. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure. Structural Design and Anchorage: Designed to withstand a constant wind load of 150mph and a 3 second wind gust of up to 75mph.

B. Sound attenuation level: 76dBA@23°.

C. Engine Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for 2 hours with ambient temperature at top of range specified in system service conditions.
Section 263213 - ENGINE GENERATORS (continued)

1. Louvers: Fixed-engine, cooling-air inlet and discharge. Storm-proof and drainable louvers prevent entry of rain and snow.

2.9 VIBRATION ISOLATION DEVICES

A. Elastomeric Isolator Pads: Oil- and water-resistant elastomer or natural rubber, arranged in single or multiple layers, molded with a nonslip pattern and galvanized-steel baseplates of sufficient stiffness for uniform loading over pad area, and factory cut to sizes that match requirements of supported equipment.

2.10 FINISHES

A. Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.11 SOURCE QUALITY CONTROL

A. Prototype Testing: Factory test engine-generator set using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine-generator performance.

B. Examine roughing-in of piping systems and electrical connections. Verify actual locations of connections before packaged engine-generator installation.

C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Comply with packaged engine-generator manufacturers' written installation and alignment instructions and with NFPA 110.

B. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.
Section 263213 - ENGINE GENERATORS (continued)

C. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

3.3 CONNECTIONS

A. Piping installation requirements are specified in Division 23 Sections. Drawings indicate general arrangement of piping and specialties.

B. Connect fuel, cooling-system, and exhaust-system piping adjacent to packaged engine generator to allow service and maintenance.

C. Connect engine exhaust pipe to engine with flexible connector.

D. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

E. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Tests and Inspections:
 1. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here including, but not limited to, single-step full-load pickup test.
 2. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
 a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 c. Verify acceptance of charge for each element of the battery after discharge.
 d. Verify that measurements are within manufacturer's specifications.

 3. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.
 4. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine-generator system before and during system operation. Check for air, exhaust, and fluid leaks.
 5. Exhaust-System Back-Pressure Test: Use a manometer with a scale exceeding 40-inch wg (120 kPa). Connect to exhaust line close to engine exhaust manifold. Verify that back pressure at full-rated load is within manufacturer's written allowable limits for the engine.
 7. Voltage and Frequency Transient Stability Tests: Use recording oscilloscope to measure voltage and frequency transients for 50 and 100 percent step-load increases and decreases, and verify that performance is as specified.
Section 263213 - ENGINE GENERATORS (continued)

8. Harmonic-Content Tests: Measure harmonic content of output voltage under 25 percent and at 100 percent of rated linear load. Verify that harmonic content is within specified limits.

B. Coordinate tests with tests for transfer switches and run them concurrently.

C. Test instruments shall have been calibrated within the last 12 months, traceable to standards of NIST, and adequate for making positive observation of test results. Make calibration records available for examination on request.

D. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

E. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

F. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

G. Remove and replace malfunctioning units and retest as specified above.

H. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.

I. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations. Attach a label or tag to each tested component indicating satisfactory completion of tests.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators. Refer to Division 01 Section "Demonstration and Training."

END OF SECTION 263213
PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes transfer switches rated 600 V and less, including the following:
 1. Automatic transfer switches.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, weights, operating characteristics, furnished specialties, and accessories.

A. Qualification Data: For testing agency.

B. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 Section "Operation and Maintenance Data," include the following:
 1. Features and operating sequences, both automatic and manual.
 2. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.

1.4 QUALITY ASSURANCE

A. Manufacturer Qualifications: Maintain a service center capable of providing training, parts, and emergency maintenance repairs within a response period of less than eight hours from time of notification.

B. Source Limitations: Obtain automatic transfer switches through one source from a single manufacturer.

C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.

D. Comply with NEMA ICS 1.

E. Comply with NFPA 70.

F. Comply with NFPA 110.
Section 263600 - TRANSFER SWITCHES (continued)

G. Comply with UL 1008 unless requirements of these Specifications are stricter.

1.5 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 03.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Contactor Transfer Switches:
 a. Caterpillar; Engine Div.
 b. Emerson; ASCO Power Technologies, LP.
 c. Generac Power Systems, Inc.
 d. GE Zenith Controls.
 e. Kohler Power Systems; Generator Division.
 g. Spectrum Detroit Diesel.

2.2 GENERAL TRANSFER-SWITCH PRODUCT REQUIREMENTS

A. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated.

B. Tested Fault-Current Closing and Withstand Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.

1. Where transfer switch includes internal fault-current protection, rating of switch and trip unit combination shall exceed indicated fault-current value at installation location.

C. Solid-State Controls: Repetitive accuracy of all settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.

D. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.41. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.

E. Electrical Operation: Accomplish by a non-fused, momentarily energized solenoid or electric-motor-operated mechanism, mechanically and electrically interlocked in both directions.
Section 263600 - TRANSFER SWITCHES (continued)

F. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.

1. Limitation: Switches using molded-case switches or circuit breakers or insulated-case circuit-breaker components are not acceptable.
2. Switch Action: Double throw; mechanically held in both directions.
3. Contacts: Silver composition or silver alloy for load-current switching. Conventional automatic transfer-switch units, rated 225 A and higher, shall have separate arcing contacts.

G. Neutral Terminal: Solid and fully rated, unless otherwise indicated.

H. Factory Wiring: Train and bundle factory wiring and label, consistent with Shop Drawings, either by color-code or by numbered or lettered wire and cable tape markers at terminations. Color-coding and wire and cable tape markers are specified in Division 26 Section "Identification for Electrical Systems."

1. Designated Terminals: Pressure type, suitable for types and sizes of field wiring indicated.
2. Power-Terminal Arrangement and Field-Wiring Space: Suitable for top, side, or bottom entrance of feeder conductors as indicated.
3. Control Wiring: Equipped with lugs suitable for connection to terminal strips.

I. Enclosures: General-purpose NEMA 250, Type 1, complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.3 AUTOMATIC TRANSFER SWITCHES

A. Comply with Level 1 equipment according to NFPA 110.

B. Switching Arrangement: Double-throw type, incapable of pauses or intermediate position stops during normal functioning, unless otherwise indicated.

D. Automatic Transfer-Switch Features:

1. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage is adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.
2. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from zero to six seconds, and factory set for one second.
3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent.
Section 263600 - TRANSFER SWITCHES (continued)

4. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.

5. Test Switch: Simulate normal-source failure.

6. Switch-Position Pilot Lights: Indicate source to which load is connected.

 a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."

8. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.

9. Transfer Override Switch: Overrides automatic retransfer control so automatic transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.

10. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum.

11. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods are adjustable from 10 to 30 minutes. Factory settings are for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:
 a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
 b. Push-button programming control with digital display of settings.
 c. Integral battery operation of time switch when normal control power is not available.

2.4 SOURCE QUALITY CONTROL

A. Factory test and inspect components, assembled switches, and associated equipment. Ensure proper operation. Check transfer time and voltage, frequency, and time-delay settings for compliance with specified requirements. Perform dielectric strength test complying with NEMA ICS 1.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Identify components according to Division 26 Section "Identification for Electrical Systems."

B. Set field-adjustable intervals and delays, relays, and engine exerciser clock.
Section 263600 - TRANSFER SWITCHES (continued)

3.2 CONNECTIONS

A. Ground equipment according to Division 26 Section "Grounding and Bonding for Electrical Systems."

B. Connect wiring according to Division 26 Section "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.

B. Perform tests and inspections and prepare test reports.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installation, including connections, and to assist in testing.

2. After installing equipment and after electrical circuitry has been energized, test for compliance with requirements.

 a. Check for electrical continuity of circuits and for short circuits.
 b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
 c. Verify that manual transfer warnings are properly placed.
 d. Perform manual transfer operation.

5. After energizing circuits, demonstrate interlocking sequence and operational function for each switch at least three times.

 a. Simulate power failures of normal source to automatic transfer switches and of emergency source with normal source available.
 b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 c. Verify time-delay settings.
 d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 e. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cooldown and shutdown.

C. Coordinate tests with tests of generator and run them concurrently.
Section 263600 - TRANSFER SWITCHES (continued)

D. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.

E. Remove and replace malfunctioning units and retest as specified above.

F. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each switch. Remove all access panels so joints and connections are accessible to portable scanner.

1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each switch 11 months after date of Substantial Completion.

2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.

3. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.4 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment as specified below. Refer to Division 01 Section "Demonstration and Training."

B. Coordinate this training with that for generator equipment.

END OF SECTION 263600
Section 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS
 A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 26 Specification Sections, apply to this Section.

1.2 SUMMARY
 A. Section Includes:
 1. Interior solid-state luminaires that use LED technology.
 2. Lighting fixture supports.
 B. Related Requirements:
 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS
 A. CCT: Correlated color temperature.
 B. CRI: Color Rendering Index.
 C. Fixture: See "Luminaire."
 D. IP: International Protection or Ingress Protection Rating.
 E. LED: Light-emitting diode.
 F. Lumen: Measured output of lamp and luminaire, or both.
 G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS
 A. Product Data: For each type of product,
 1. Arrange in order of luminaire designation.
 2. Include data on features, accessories, and finishes.
 3. Include physical description and dimensions of luminaires.
 4. Include life, output (lumens, CCT, and CRI), and energy efficiency data.
 5. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing and Calculation Guides, of each lighting fixture.
Section 265119 - LED INTERIOR LIGHTING (continued)

type. The adjustment factors shall be for lamps and accessories identical to those indicated for the lighting fixture as applied in this Project.

a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.

B. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.

1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.

1.7 QUALITY ASSURANCE

A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.

B. Provide luminaires from a single manufacturer for each luminaire type.

C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

1.8 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.9 WARRANTY

A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.

B. Warranty Period: Five year(s) from date of Substantial Completion.
Section 265119 - LED INTERIOR LIGHTING (continued)

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.

C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.

D. Recessed Fixtures: Comply with NEMA LE 4.

E. CRI of 85 minimum. CCT of 4100 K.

F. Rated lamp life of 50,000 hours.

G. Lamps dimmable from 100 percent to 10 percent of maximum light output.

H. Internal driver.

I. Nominal Operating Voltage: Dual rated, 120 V ac or 277 V ac.
 1. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.

2.2 MATERIALS

A. Metal Parts:
 1. Free of burrs and sharp corners and edges.
 2. Sheet metal components shall be steel unless otherwise indicated.
 3. Form and support to prevent warping and sagging.

B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

C. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 1. Label shall include the following lamp characteristics:
 a. "USE ONLY" and include specific lamp type.
 b. Lamp shape, size, wattage, and coating.
 c. CCT and CRI for all luminaires.
2.3 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.4 LUMINAIRE FIXTURE SUPPORT COMPONENTS

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

B. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.

C. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).

D. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting.

3.3 INSTALLATION

A. Comply with NECA 1.

B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.

C. Install lamps in each luminaire.

D. Supports:

 1. Sized and rated for luminaire weight.
 2. Able to maintain luminaire position after cleaning and relamping.
 3. Provide support for luminaire without causing deflection of ceiling or wall.
Section 265119 - LED INTERIOR LIGHTING (continued)

4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.

E. Flush-Mounted Luminaire Support:
 1. Secured to outlet box.
 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 3. Trim ring flush with finished surface.

F. Wall-Mounted Luminaire Support:
 1. Attached to a minimum 20 gauge backing plate attached to wall structural members.
 2. Do not attach luminaires directly to gypsum board.

G. Ceiling-Mounted Luminaire Support:
 1. Ceiling mount with two 5/32-inch- (4-mm-) diameter aircraft cable supports adjustable to 120 inches (6 m) in length.
 2. Ceiling mount with pendant mount with 5/32-inch- (4-mm-) diameter aircraft cable supports adjustable to 120 inches (6 m) in length.
 3. Ceiling mount with hook mount.

H. Suspended Luminaire Support:
 1. Pendants and Rods: Where longer than 48 inches (1200 mm), brace to limit swinging.
 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of luminaire chassis, including one at each end.
 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

I. Ceiling-Grid-Mounted Luminaires:
 1. Secure to any required outlet box.
 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

J. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
Section 265119 - LED INTERIOR LIGHTING (continued)

3.5 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:
 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.

B. Luminaire will be considered defective if it does not pass operation tests and inspections.

C. Prepare test and inspection reports.

END OF SECTION 265119
SECTION 311100 – CLEARING, GRUBBING AND STRIPPING

PART 1 – GENERAL

1.01 DESCRIPTION

A. Scope of Work: This Section describes the work included in clearing, grubbing, stripping, and otherwise preparing the project site for new emergency and HVAC unit exterior equipment pads' mulch and seed disturbed areas.

B. Related Work Specified Elsewhere:

1. Earthwork: Section 312313.

C. Definitions:

1. Clearing: Remove and dispose of shrubs, brush, limbs, and other vegetative growth. Remove all evidence of their presence from the surface including sticks and branches. Remove and dispose of trash piles and rubbish that currently is scattered over the scope of work area or collects there during construction. Protect trees, shrubs, vegetative growth, and fencing which are not designed for removal. Clearing operations shall be conducted so as to prevent damage to existing structures and installations, and to those under construction, so as to provide for safety of employees and others.

2. Grubbing: Grubbing shall consist of the complete removal of all stumps, roots larger than 1-1/2 inches in diameter, matted roots, brush, timber, logs, and any other organic or metallic debris remaining after clearing not suitable for foundation purposes, resting on, under or protruding through the surface of the ground to a depth of 18 inches below the subgrade. All depressions excavated below the original ground surface for or by the removal of such objects, shall be refilled with suitable materials and compacted to a density conforming to the surrounding ground surface.

3. Stripping: Remove and dispose of all organics and sod, topsoil, grass, and grass roots, and other objectionable material remaining after clearing and grubbing from the areas designated to be stripped. Grass, grass roots and organic material in areas to be excavated or filled shall be stripped to the depth as noted in the soils report. Strippings and other unsuitable material, such as deet, shall be disposed of by the Contractor unless directed otherwise by the Engineer. Replace with clean fill composed of sandy clay compacted to support specified pads.

PART 2 – MATERIALS

2.01 GENERAL

A. Trees and Shrubbery: Existing designated trees and shrubbery, and other vegetative material is not shown on the Drawings: Inspect the site so as to determine the nature, location, size, and extent of vegetative material to be removed or preserved, as specified herein. Preserve, in place, trees that are specifically shown on the Drawings and designated to be preserved. Any trees or vegetation to remain shall be protected from damage of construction activities using approved arboreal methods.

B. Preservation of Trees, Shrubs, and Other Plant Material:

1. All plant materials (trees, shrubbery, and plants) beyond the limits of clearing and grubbing shall be saved and protected from damage resulting from the work. No filling, excavating,
trenching, or stockpiling of materials will be permitted within the drip line of these plant materials. The drip line is defined as a circle drawn by extending a line vertically to the ground from the outermost branches of a plant or group of plants. To prevent soil compaction within the drip line area, no equipment will be permitted within this area.

2. When trees are close together, restrict entry to area within drip line by fencing. In areas where no fence is erected, the trunks of all trees 2 inches or greater in diameter shall be protected by encircling the trunk entirely with boards held securely by 12-gauge wire and staples. This protection shall extend from ground level to a height of 6 feet. Cut and remove tree branches where such cutting is necessary to affect construction operation. Remove branches other than those required to affect the work to provide a balanced appearance of any tree. Scars resulting from the removal of branches shall be treated with a tree sealant.

PART 3 – EXECUTION

3.01 GENERAL

A. Clearing and Grubbing Limits: All excavation areas associated with new structures, slabs, and roadways shall be cleared and grubbed to the following depths:

1. Equipment Pads: 18 inches below existing grade and replaced with compacted backfill as specified herein.

2. All other areas: 1 foot below completed surface grade.

B. Disposal of Clearing and Grubbing Debris: No burning of combustible materials will be allowed. Remove all cleared and grubbed material from the work site and dispose of at an approved site.

C. Areas to be Stripped: All excavation and embankment areas associated with new structures, slabs, walks, and roadways shall be stripped. Stockpile areas shall be stripped.

D. Disposal of Strippings: Remove all stripped material and dispose off-site, at an approved location unless otherwise directed.
SECTION 312000 - EARTHWORK FOR BUILDINGS

PART - GENERAL

1.01 SUMMARY

A. Work included:
 1. Earthwork required for this project may include, but is not necessarily limited to:
 a. Excavation.
 b. Filling and backfilling to attain indicated grades.
 c. Trenching and trench backfilling.
 d. Compaction

1.02 BENCHMARKS

A. Maintain two existing bench marks on the site for references. All vertical dimensions shall be checked from these bench marks.

1.03 FINISHED GRADES

A. Finished grades, as used herein, mean the final grade elevations indicated on the drawings. Should finished grades shown on spot elevations conflict with those shown by the contours, the spot elevations shall govern.

1.04 BORROW PITS

A. Submit representative samples of all fill material requiring compaction to the Designated Testing Laboratory. Material and borrow pits shall be approved by the Architect prior to filling operations. If the quantity available from site grading is not sufficient, purchasing, hauling, and blending of fill shall be done by the Contractor.

1.05 CONTROLLED FILL

A. Class I Fill is all Structural Fill to underside of slabs and to support foundations or footings. Class I Fill shall extend to 10 feet outside the building footprint.

B. Class II Fill is all Backfill below finish grade immediately behind walls and in trenches and embankments under walks, drives, parking areas, and all areas to be paved. The top two-feet of fill under drives and parking areas shall be Class I Fill. The area shall extend to 10 feet outside paved areas.

C. Class III Fill is all Backfill used for filling trenches not under paved or building areas.

1.06 DESIGNATED TESTING LABORATORY

A. The Contractor shall employ, at his sole expense, an independent testing agency acceptable to the Architect/Engineer.

B. Designated Testing Laboratory shall:
 1. Witness proofrolling and make recommendations concerning undercutting loose subgrade areas and surface scarification.
 2. Observe and make recommendations concerning surface drainage.
SECTION 312000 - EARTHWORK FOR BUILDINGS (continued):

4. Provide advice concerning fill soils on site and the selection of borrow soils.
5. Evaluate the suitability of the subgrade soils at the foundation bearing level.
6. The Designated Testing Laboratory shall report to the Architect in writing, on a daily basis, the results of the tests including a statement that all tests have been performed as required by the specifications.

1.07 COMPACTION TESTING

A. Existing Subgrade under Building Slabs and Paved Areas: One field density test for each 500 sf of building or paved area.

B. Class I and II Fills: One Field Density Test for each 500 sf of building area, 2,000 sf of paved areas after each lift of fill, and one test per 200 lineal feet of trench per one foot lift of fill.

C. Class III Fills: One field density test per 200 lineal feet of trench at a depth of one foot above pipe.

D. Exact locations of tests shall be as directed by the Architect. Submit test reports.

1.08 DENSITY TESTING IN FOUNDATIONS

A. One test per 50 linear feet of continuous thickened slab and monolithic footing subgrade.

B. One test for every column footing.

1.09 INSUFFICIENT FILL MATERIAL

A. If quantity of grading material is insufficient to provide finish grade elevations indicated on the drawings, obtain additional fill material of specified quality from an off-site source at no additional cost to the owner.

1.10 EXCESS CUT MATERIAL

A. If quantity of grading material is in excess of quantities required to provide finished grade elevations indicated on the drawings, any excess material shall be disposed of off-site at no additional cost to the owner.

1.11 DUST CONTROL:

A. Use all means necessary to control dust on and near the Work and on and near all off-site borrow areas if such dust is caused by the Contractor's operations during performance of the Work or is resulting from the condition in which the Contractor leaves the site.

B. Thoroughly moisten all surfaces as required to prevent dust being a nuisance to the public, neighbors, and concurrent performance of other work on the site.

1.12 MATERIAL PROTECTION

A. Use all means necessary to protect all materials and existing utilities before, during, and after installation and to protect all objects designated to remain.

B. In the event of damage, immediately make all repairs and replacements necessary to the approval of the Engineer and at no additional cost to the Owner.
SECTION 312000 - EARTHWORK FOR BUILDINGS (continued):

1.13 EXISTING UNDERGROUND FACILITIES

A. Underground structures and utilities, as indicated, are located according to best available information.

B. Locate all underground facilities in advance of excavation to avoid conflicts with new construction.

1.14 CONFLICTS

A. Perform Work in such a manner as to cause a minimum of interference with the service rendered by the facility disturbed.

B. Immediately repair or replace structures or facilities damaged.

C. Restore to condition existing prior to damage in accordance with best standard practices as approved by the Engineer and at no additional cost to the Owner.

1.15 SCHEDULING:

A. The Architect reserves the right to direct the order of work as may be in the best interest of the Owner.

PART 2 - PRODUCTS

2.01 FILL MATERIAL

A. All fill material shall be subjected to approval of the engineer.

B. Sand Fill (capillary water barrier) material shall consist of a clean sand with a fineness modulus of 1.6 to 3.1 and containing not more than 10 percent by weight finer than No. 200 U.S. Standard Sieve.

C. Structural Fill material shall consist of inorganic material free of roots, cobbles and boulders and classified as GM, GC, SW, SP, SM, SC, or CL by ASTM D2487-85 "Standard Methods for Classification of Soils for Engineering purposes". Earth Fill shall also conform to the following:
 1. Liquid Limit = 40 maximum
 2. Plasticity Index = 15 maximum
 3. Dry Unit Weight = 100pcf minimum density
 4. Unsuitable material includes vegetable matter, sod, muck, roots, rubbish, highly plastic clay soils, and organic soils.

D. Notification:
 1. For approval of imported fill material, notify the Architect at least four (4) working days in advance of intention to import material, designate the proposed borrow area, and permit the Architect to sample as necessary from the borrow area for the purpose of making acceptance tests to prove the quality of the material.

2.02 OTHER MATERIALS:

A. All other materials not specifically described but required for proper completion of the Work of this Section, shall be as selected by the Contractor subject to the approval of the Engineer.
SECTION 312000 - EARTHWORK FOR BUILDINGS (continued):

PART 3 - EXECUTION

3.01 GENERAL:

A. Familiarization:
 1. Prior to all Work of this Section, become thoroughly familiar with the site, the site conditions, and all portions of the Work falling within this Section.

B. Backfilling prior to approvals:
 1. Do not allow or cause any of the Work performed or installed to be covered up or enclosed by Work of this Section prior to all required inspections, tests, and approvals.
 2. Should any of the Work be so enclosed or covered up before it has been approved, uncover all such Work at no additional cost to the Owner.
 3. After the Work has been completely tested, inspected, and approved, make all repairs and replacements necessary to restore the Work to the condition in which it was found at the time of uncovering, all at no additional cost to the Owner.

C. Conservation of topsoil:
 1. When indicated on plans or directed by the Engineer, remove topsoil and spread on areas already graded and prepared, or transport and deposit in storage piles at locations approved by the Engineer.
 2. Excavate topsoil to a depth of six (6) inches.
 3. Keep topsoil, when stored, separate from other excavated materials.
 4. Store or place topsoil free from roots, stones and other undesirable material.
 5. Topsoil shall be stripped and stockpiled. disturbed areas not designated as parking, building, sidewalks, or other impervious areas shall receive topsoil to a depth of 6 inches.

3.02 PREPARATION:

A. Temporary drainage:
 1. Maintain adequate drainage over site while construction is in progress.

B. Unfavorable weather:
 1. Do not place, spread, or roll any fill material during unfavorable weather conditions.
 2. Do not resume fill operations until moisture content and fill density are satisfactory to the Engineer.

3.03 GEOTECHNICAL EVALUATION AND UNDERCUTTING

A. After clearing, grubbing and topsoil removal is complete, contact the Designated Testing Laboratory (DTL) to evaluate the site areas under the new buildings and pavements.

B. The DTL shall evaluate the subgrade soils.

C. Any material that is unsuitable or can not be compacted shall be undercut or re-worked in the presence of, and as recommended by, the DTL.

D. The contractor shall provide access and assistance to the DTL.

3.04 EXCAVATION

A. General

District Two Medical Examiner’s Office
15103 – V.E. Set
SECTION 312000 - EARTHWORK FOR BUILDINGS (continued):

1. Conform to dimensions, lines and grades indicated on plans.
2. Transport suitable excavated material and place in fill areas within specified limits of Work and compact as specified.
3. If directed by the Engineer, stockpile excavated material suitable for fill and backfill in approved locations.
4. Remove unsuitable material occurring within or below the limits of excavation to the depth directed by the Engineer. Dispose of excess and unsuitable material outside the limits of Work.
5. Backfill and compact all over excavated areas as specified at no additional cost to the Owner.
6. It shall be the Contractor’s responsibility to shore excavations where necessary to protect workmen, banks, adjacent paving, structures, utilities and other existing facilities.

B. Structures:
1. Excavated to elevations and dimensions indicated.
2. In stable soil sides and bottom of footing excavations may be cut clean in order that concrete may be poured without forming.
3. In unstable soil extend excavations sufficient distance from footings to allow for placing and removing forms.

C. Utility trenches:
1. Perform excavation for storm sewers, sanitary sewers, water lines and other utility trenches as specified in sections pertaining to the appropriate utility.

3.05 COMPACTION GENERAL

A. Utility pipe:
1. Do not allow compacting equipment to come in direct contact with pipe.
2. Exercise extra care in obtaining adequate compaction under pipe to prevent injurious shear or bending loads.
3. No sharp gravel or object may be placed adjacent to plastic pressure pipe.
4. Remainder of backfill may be placed by standard procedures.
5. Dress off to conform to adjacent contours.
6. Where settlement occurs or improper filling is evident, refill and redress trench to grade.
7. Backfill areas of paving and walks immediately after testing and/or approval of pipe or conduit installation.
8. Maintain surface in paved areas in a smooth riding condition until paving is replaced.

3.06 INSTALLATION OF CLASS I FILL

A. Class I Fill shall be Structural Fill material.

B. Compact within +3 percent of optimum moisture content in 8-inch (maximum) loose layers to a density equivalent to 98 percent of the Standard Proctor Maximum (ASTM D 698).

3.07 INSTALLATION OF CLASS II FILL

A. Class II Fill shall be Structural Fill materials except that fill immediately under floor slabs as indicated on drawings shall be Sand Fill material.

B. Compact within +3 percent of optimum moisture content in 8-inch loose layers to a density equivalent to 95 percent of the Standard Proctor Maximum (ASTM D 698). The top two feet under
SECTION 312000 - EARTHWORK FOR BUILDINGS (continued):

paved areas and the top one foot for other areas may be Class I fill.

3.08 INSTALLATION OF CLASS III FILL

A. Class III Fill may be Structural Fill or Site Fill.

B. Compact fill in utility trenches not under buildings or paved areas to a density equivalent to 95 percent of the Standard Proctor Maximum (ASTM D 698).

3.09 INSTALLATION OF BACKFILL

A. Shore Foundation Walls which are to be tied into floor slabs prior to installation of Backfill and until slabs have been in place sufficient time to achieve strength and provide structural stability against overturning.

B. Where Backfill is required on both sides of walls, it shall be brought up in even layers so as not to provide an unequal lateral load.

C. Install Backfill against Foundation Walls only when directed by the Architect, and elsewhere as construction progress permits.

END OF SECTION 312000
SECTION 313116 - TERMITE CONTROL

PART 1 - GENERAL

1.01 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.02 QUALITY ASSURANCE

A. Qualifications: Engage a licensed professional pest control operator, for application of soil treatment solution. License holder shall have been in business for at least 10 years.

B. Regulatory Requirements: Use only termicides which bear a Federal registration number of the U.S. Environmental Protection Agency.

C. Comply with FBC Section 1816 - Termite Protection.

1.03 JOB CONDITIONS

A. Restrictions: Do not apply soil treatment solution until excavating, filling and grading operations are completed, except as otherwise required in construction operations.

B. To insure penetration, do not apply soil treatment to frozen or excessively wet soils or during inclement weather. Comply with handling and application instructions of soil toxicant manufacturer.

1.04 SUBMITTALS

A. Product Data: Treatments and application instructions, including EPA-Registered Label.

License and Experience: Provide a copy of current license and statement of experience.

1.05 WARRANTY

A. Provide 5 year written warranty from date of treatment, signed by Applicator and Contractor, certifying that applied soil termicide treatment will prevent infestation of subterranean termites and, that if subterranean termite activity is discovered during warranty period, Contractor will re-treat soil and repair or replace damage caused by termite infestation.

PART 2 - PRODUCTS

2.01 Materials

A. Soil Treatment Solution: Use emulsible concentrate termicide for dilution with water, specially formulated to prevent termite infestation. Provide a working solution of one of following chemical elements and concentrations.

A. Permethrin ("Dragnet", "Torpedo"); 0.5% in water emulsion.

B. Cypermethrin ("Prevail FT"); 0.5% in water emulsion.

C. Imidacloprid ("Premise 75"); 0.1% water emulsion.
SECTION 313116 – TERMITE CONTROL (continued):

D. **Fipronil** (Termidor 80WG): 0.125% water emulsion.

B. Other solutions may be used as recommended by Applicator if acceptable to local governing authorities and to Architect. Use only soil treatment solutions which are not injurious to planting.

PART 3 - EXECUTION

3.01 APPLICATION

A. **Surface Preparation**: Remove foreign matter which could decrease effectiveness of treatment on areas to be treated. Loosen, rake, and level soil to be treated, except previously compacted areas under slabs and foundations. Termiticide may be applied before placement of compacted fill under slabs, if recommended by manufacturer.

B. **Application Rates**: Apply soil treatment solution at rates recommended by soil termiticide manufacturer.

C. **Treatment Areas**: Treat areas required by applicable codes. In addition treat everything within one foot outside of building perimeter and as follows:
 1. Slabs-On-Grade: Under ground-supported slab construction, including footings, building slabs, and attached slabs as an overall treatment. Treat soil materials before concrete footings and slabs are placed.
 2. Foundations: Adjacent soil including soil along the entire inside perimeter of foundation walls, around plumbing pipes and electric conduit penetrating the slab, and around interior column footers, and piers; also along the entire outside perimeter, from grade to bottom of footing. Avoid soil washout around footings.

3.02 Post signs in areas of application warning workers that soil termiticide treatment has been applied. Remove signs when areas are covered by other construction.

3.03 Reapply soil termiticide treatment solution to areas disturbed by subsequent excavation or other construction activities following application.

END OF SECTION 313116