Waterbody: Lake Munson

Basin: Lake Munson

Lake Munson is an approximately 255 acre, cypress-rimmed, nitrogen-limited lake located south of the City of Tallahassee. The lake is believed to have originally been a cypress swamp but has since been impounded and now functions as a shallow man-made lake. Lake Munson receives the majority of its water from the heavily altered Munson Slough and its tributaries. Lake outflow continues southward via Munson Slough and finally drains into Ames Sink. Dye trace studies have confirmed a direct connection between Ames Sink and Wakulla Springs.

The lake has a history of severe water quality and ecological problems including fish kills, algal blooms, exotic vegetation and snails, high nutrient and bacterial levels, low game fish productivity, sediment contamination, and depressed oxygen levels.

As shown in the following pie chart, approximately 45% of land use in the 42,526 acre Lake Munson basin is industrial, commercial, residential, or transportation. Increases in stormwater runoff and waterbody nutrient loads can often be attributed to these types of land uses.

Background

Healthy, well-balanced lake communities may be maintained with some level of human activity, but excessive human disturbance may result in waterbody degradation. Human stressors may include increased inputs of nutrients, sediments, and/or other contaminants from watershed runoff, adverse hydrologic alterations, undesirable removal of habitat or riparian buffer vegetation, and introduction of exotic plants and animals. Water quality standards are designed to protect designated uses of the waters of the state (e.g., recreation, aquatic life, fish consumption), and exceedances of these standards are associated with interference of the designated use.

The lake received a Total Maximum Daily Load (TMDL) by the Florida Department of Environmental Protection (FDEP) in 2013. The TMDL requires the lake to meet the dissolved oxygen criterion and nutrient TMDL concentrations, which, based on mean concentrations from the 2004-2008 period, will require a 50 percent reduction for Biological Oxygen Demand (BOD), a 32.5 percent reduction for Total Nitrogen (TN), a 76.7 percent reduction for Total Phosphorus (TP) and a 31.9 percent reduction in turbidity.

There has been a general consensus that the organic and nutrient-rich sediments in Lake Munson are contributing to the poor water quality and that sediment removal would be the best way to improve the lake’s water quality. Unfortunately, sediment removal would be logistically very difficult and extremely expensive. Another option is to periodically...
drain the lake. The lake drawdowns are expected to result in de-watering, compaction, and partial oxidation of sediments that produced a sediment “cap” that would serve to improve water quality and simultaneously generate suitable habitat for fish spawning.

On April 27, 2010, the Leon County Board of County Commissioners directed staff to implement the County’s Science Advisory Committee lake drawdown recommendations. After additional meetings, which included staff and committee members from the Florida Fish and Wildlife Conservation Commission, FDEP, U.S. Forest Service, Leon County Science Advisory and Water Resource Committees, and the community surrounding the lake, it was decided to start the lake drawdown October 18, 2010. The drawdown continued until June 14, 2011. Sampling recommenced in the third quarter of 2011. Unfortunately, it does not appear that the initial drawdown improved water quality.

Methods

Surface water sampling, sediment sampling and a Lake Vegetation Index (LVI) were conducted and met the collection and analysis requirements of the Florida Department of Environmental Protection (FDEP).

Results

Nutrients

The nutrient thresholds and results are found in Table 1. According to FDEP requirements, Numeric Nutrient Criteria (expressed as an annual geometric mean) cannot be exceeded more than once in a three year period.

<table>
<thead>
<tr>
<th>Clear Lakes High Alkalinity</th>
<th>Chl-α (20 µg/L)</th>
<th>Total Nitrogen (1.05-1.91 mg/L)</th>
<th>Total Phosphorus (0.03-0.09 mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>3.6</td>
<td>0.35</td>
<td>0.06</td>
</tr>
<tr>
<td>2005</td>
<td>13.8</td>
<td>0.62</td>
<td>0.11</td>
</tr>
<tr>
<td>2006</td>
<td>12.4</td>
<td>1.38</td>
<td>0.19</td>
</tr>
<tr>
<td>2007</td>
<td>10.9</td>
<td>1.49</td>
<td>0.30</td>
</tr>
<tr>
<td>2008</td>
<td>13.1</td>
<td>0.76</td>
<td>0.20</td>
</tr>
<tr>
<td>2009</td>
<td>5.5</td>
<td>0.88</td>
<td>0.17</td>
</tr>
<tr>
<td>2010</td>
<td>8.7</td>
<td>1.07</td>
<td>0.16</td>
</tr>
<tr>
<td>2011</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2012</td>
<td>39.0</td>
<td>1.08</td>
<td>0.18</td>
</tr>
<tr>
<td>2013</td>
<td>85.0</td>
<td>1.51</td>
<td>0.24</td>
</tr>
<tr>
<td>2014</td>
<td>13.9</td>
<td>1.27</td>
<td>0.24</td>
</tr>
<tr>
<td>2015</td>
<td>54.3</td>
<td>1.37</td>
<td>0.22</td>
</tr>
</tbody>
</table>

The table shows that the geometric mean of chlorophyll-α, total nitrogen and total phosphorus exceeded the state criteria several times over the sampling period. The geometric mean for chlorophyll-α in 2013 (85.0 µg/L) was the highest reading on record.

While the lake drawdown appeared to consolidate the sediment, there seems to have been little to no effect regarding nutrient reduction in the water column. As shown in Figures 1 through 4, BOD, total nitrogen, total phosphorus and turbidity levels are consistently above the TMDL limits. Algal blooms, represented by chlorophyll-α (Figure 5), also
continue to be a problem in Lake Munson. FDEP analysis determined that samples taken from the algal blooms that occurred in February and June of 2013 were dominated by *Microcystis* sp., a known toxin producer. FDEP confirmed that microcystin toxin was being released at the time of the algal blooms.

Metals

Both Munson Slough and Lake Munson exceeded Class III water quality criteria for lead in 2015. Relict anthropogenic sources such as leaded gasoline are most likely to be the cause of these exceedances.

[Click here for more information on metal levels in Leon County waterbodies.]

Floral Assessment

The Lake Vegetation Index score for Lake Munson was 58, placing the lake’s vegetative community in the healthy category.

Sixty-nine species were found during the survey. The native species pond cypress (*Taxodium ascendens*) was the most dominant species in the lake. Other native shoreline vegetation included: red maple (*Acer rubrum*), buttonbush (*Cephalanthus occidentalis*) and swamp tupelo (*Nyssa sylvatica biflora*).

Unfortunately, camphor tree (*Cinnamomum camphora*), wild taro (*Colocasia esculenta*), Chinese privet (*Ligustrum sinense*), water hyacinth (*Eichhornia crassipes*), Peruvian primrose willow (*Ludwigia peruviana*), wandering jew (*Tradescantia zebrina*) and Chinese tallow (*Sapium sebiferum*), all listed as Category I Invasive Exotics, were found in the littoral zone of Lake Munson. Alligator weed (*Alternanthera philoxeroides*) and rattlebox (*Sesbania punicea*) are Category II Invasive Exotics found in the lake. Other non-native species in and around the lake include yellow nut sedge (*Cyperus esculentus*), parrot feather watermilfoil (*Myriophyllum aquaticum*) and water spangles (*Salvinia minima*).
Figure 1. BOD results for Lake Munson.

Figure 2. Total Nitrogen results for Lake Munson.

Figure 3. Total phosphorus results for Lake Munson.
Conclusions

Based on ongoing sampling, Lake Munson did not meet the nutrient thresholds for the East Panhandle Region. BOD, total nitrogen, total phosphorus and turbidity are consistently above the TMDL limits. Algal blooms, represented by chlorophyll-a, continue to be a problem in the lake. The aforementioned statements suggest that the initial lake drawdown seemed to have had little or no effect regarding nutrient reduction in the water column. Lake Munson exceeded Class III water quality criteria for lead in 2015. Relict anthropogenic sources such as leaded gasoline are most likely to be the cause of these exceedances. The floral community is considered “healthy” by the LVI.

Thank you for your interest in maintaining the quality of Leon County’s water resources. Please feel free to contact us if you have any questions.

Contact and resources for more information

www.LeonCountyFL.gov/WaterResources

Click here to access the results for all water quality stations sampled in 2015.

Click here for map of watershed – Sample sites LMU7 and LMU8.

Johnny Richardson, Water Resource Scientist
(850) 606-1500
Richardsonjo@leoncountyfl.gov